The answer is A because the “hops” are jumping over two spaces which equals 2/10 simplified to 1/5. and since the number line stops at 2 it’d be 2 and not 1. If you do the keep change flip method for answer option one you get 10.
Answer:
if I'm solving for x, then its 2
(I think)
Answer:
Height = 1 inch
Step-by-step explanation:
area of triangle = 1/2 x base x height
11.5 =1/2 x 23 x height
23/23 = height
height = 1
Answer:
The option "StartFraction 1 Over 3 Superscript 8" is correct
That is
is correct answer
Therefore
Step-by-step explanation:
Given expression is ((2 Superscript negative 2 Baseline) (3 Superscript 4 Baseline)) Superscript negative 3 Baseline times ((2 Superscript negative 3 Baseline) (3 squared)) squared
The given expression can be written as
![[(2^{-2})(3^4)]^{-3}\times [(2^{-3})(3^2)]^2](https://tex.z-dn.net/?f=%5B%282%5E%7B-2%7D%29%283%5E4%29%5D%5E%7B-3%7D%5Ctimes%20%5B%282%5E%7B-3%7D%29%283%5E2%29%5D%5E2)
To find the simplified form of the given expression :
![[(2^{-2})(3^4)]^{-3}\times [(2^{-3})(3^2)]^2](https://tex.z-dn.net/?f=%5B%282%5E%7B-2%7D%29%283%5E4%29%5D%5E%7B-3%7D%5Ctimes%20%5B%282%5E%7B-3%7D%29%283%5E2%29%5D%5E2)
( using the property
)
( using the property 
( combining the like powers )
( using the property
)

( using the property
)
Therefore
Therefore option "StartFraction 1 Over 3 Superscript 8" is correct
That is
is correct answer
1. To solve this exercise, you must apply the formula for calculate the area of a trapezoid, which is shown below:
<span>
A=(b1+b2/2)h
</span><span>
A is the area of the trapezoid.
</span><span> b1 is the larger base of the trapezoid (b1=16-4=12 ft).
</span><span> b2 is the smaller base of the trapezoid (b2=10-4=6 ft).
</span><span> h is the height of the trapezoid (h=12-4=8 ft)
</span><span>
2. When you substitute these values into the formula A=(b1+b2/2)h, you obtain:
</span><span>
A=(b1+b2/2)h
</span><span> A=(12 ft+6 ft/2)(8 ft)
</span><span> A=9 ftx8ft
</span><span> A=72 ft²
</span><span>
3. </span><span>The length of fencing is:</span> a²=b²+c² a=√b²+c² a=√(8 ft)²+(6 ft)² a=10 ft Perimeter (Length of fencing)=12 ft+8 ft+6 ft+10 ft=36 ft