1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
3 years ago
10

Express a decimal number ( ie 0.768) - process description please - as a rational number (96/125)?

Mathematics
1 answer:
Stels [109]3 years ago
5 0

The decimal representation of any number is a linear combination of powers of 10. In other words, given a number like 123.456, we can expand it as

1\cdot10^2+2\cdot10^1+3\cdot10^0+4\cdot10^{-1}+5\cdot10^{-2}+6\cdot10^{-3}

10^{-n}=\dfrac1{10^n} for any n, so the above is the same as

100+20+3+\dfrac4{10}+\dfrac5{100}+\dfrac6{1000}=\dfrac{100000+20000+3000+400+50+6}{1000}=\dfrac{123456}{1000}

Similarly, we can write

0.768=\dfrac{768}{1000}

Now it's a question of reducing the fraction as much as possible. We have \mathrm{gcd}(768,1000)=8 so

\dfrac{768}{1000}=\dfrac{96\cdot8}{125\cdot8}=\dfrac{96}{125}

You might be interested in
in the actual room, the distance between the front and back walls is 8 feet. what is the actual length of the front wall, in fee
Bogdan [553]

Answer:

8 feet

Step-by-step explanation:

it actually will be 8 feet

3 0
2 years ago
Find the measures of two complementary angles, ÐA and ÐB, if mÐA = (7x + 4)° and mÐB = (4x + 9)°. Measure of angle A = ... Measu
Westkost [7]

Answer:

The measure of angle A is 53 degrees

The measure of angle B is 37 degrees

Step-by-step explanation:

Here in this question, we are interested in calculating the measure of the two angle.

When how angles are complementary, it means the sum of both equals 90 degrees

mathematically ;

(7x + 4) + (4x + 9) = 90

7x + 4x + 4 + 9 = 90

11x + 13 = 90

11x = 90-13

11x = 77

x = 77/11 = 7

The measure of angle A = 7x + 4 = 7(7) + 4 = 49 + 4 = 53 degrees

The measure of B = 4x + 9 = 4(7) + 9 = 28 + 9 = 37 degrees

3 0
3 years ago
Find the derivative of following function.
Aleks04 [339]

Answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

General Formulas and Concepts:
<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (cu)' = cu'

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (uv)' = u'v + uv'

Derivative Rule [Quotient Rule]:
\displaystyle \bigg( \frac{u}{v} \bigg)' = \frac{vu' - uv'}{v^2}

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

Since the answering box is <em>way</em> too small for this problem, there will be limited explanation.

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle y = \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \times \frac{\tan^2 x + 5x}{\csc^2 x + 3}

<u>Step 2: Differentiate</u>

We can differentiate this function with the use of the given <em>derivative rules and properties</em>.

Applying Product Rule:

\displaystyle y' = \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) '

Differentiating the first portion using Quotient Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( \cos^2 x - 3\sqrt{x} + 6 \big)' \big( \sin^2 x + 6 \big) - \big( \sin^2 x + 6 \big)' \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Differentiating the second portion using Quotient Rule again:

\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( \tan^2 x + 5x \big)' \big( \csc^2 x + 3 \big) - \big( \csc^2 x + 3 \big)' \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule again:
\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Substitute in derivatives:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2} \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Simplify:

\displaystyle y' = \frac{\big( \tan^2 x + 5x \big) \bigg[ \big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - 2 \sin x \cos x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \bigg]}{\big( \sin^2 x + 6 \big)^2 \big( \csc^2 x + 3 \big)} + \frac{\big( \cos^2 x - 3\sqrt{x} +6 \big) \bigg[ \big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) + 2 \csc^2 x \cot x \big( \tan^2 x + 5x \big) \bigg] }{\big( \csc^2 x + 3 \big)^2 \big( \sin^2 x + 6 \big)}

We can rewrite the differential by factoring and common mathematical properties to obtain our final answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

∴ we have found our derivative.

---

Learn more about derivatives: brainly.com/question/26836290

Learn more about calculus: brainly.com/question/23558817

---

Topic: Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

8 0
2 years ago
Read 2 more answers
How many students in the marching band are girls
Hoochie [10]

Answer:

Hello,

If 7/10 boys represent 28 boys so, 3/10 girls ? how many girls ?

cross product

7/10 > 28

3/10 > ?

3/10*28/(7/10)=12

There are 12 girls


Step-by-step explanation:


3 0
3 years ago
Can you guys see if you can solve B) for me plz
yanalaym [24]
In the b section on this piece of paper, we can see, that this would practically be a pie graph, or if you would want to call it a graph in general. As the question stated, we see how we would want to find the perimeter of the figure. So this, sense this would only be 1/4 of the figure, we would then do 4(in) x's 4 and from this, your perimeter would give you 16(in).
8 0
3 years ago
Other questions:
  • Students are painting a mural. So far the mural is painted 1/4 blue 2/8 red and 3/12 green. Use fraction strips to determine how
    6·1 answer
  • Which expression show the prime factorization of 36?
    11·2 answers
  • Write the ratio as a fraction: 2 1/3 : 4 1/2
    7·1 answer
  • Anybody know 7_(-1)​
    10·1 answer
  • como calcular la cantidad de horas por proyecto si un contratista tiene 5,000 horas-hombres y el costo es de $10 y $12 por proye
    11·1 answer
  • I need some help here fellas​
    13·1 answer
  • 2a*5a⁷<br>what is this in it's smallest form​
    13·2 answers
  • What is an explicit formula for the following recusive formula an=an-1+7;a1=2
    15·1 answer
  • Simplifie -4.9(2+6.2v)
    10·2 answers
  • Evaluate 4+(m-n)^4 when m =7 and n = 5
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!