1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
7

Find the derivative of following function.

Mathematics
2 answers:
Aleks04 [339]3 years ago
8 0

Answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

General Formulas and Concepts:
<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (cu)' = cu'

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (uv)' = u'v + uv'

Derivative Rule [Quotient Rule]:
\displaystyle \bigg( \frac{u}{v} \bigg)' = \frac{vu' - uv'}{v^2}

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

Since the answering box is <em>way</em> too small for this problem, there will be limited explanation.

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle y = \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \times \frac{\tan^2 x + 5x}{\csc^2 x + 3}

<u>Step 2: Differentiate</u>

We can differentiate this function with the use of the given <em>derivative rules and properties</em>.

Applying Product Rule:

\displaystyle y' = \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) '

Differentiating the first portion using Quotient Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( \cos^2 x - 3\sqrt{x} + 6 \big)' \big( \sin^2 x + 6 \big) - \big( \sin^2 x + 6 \big)' \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Differentiating the second portion using Quotient Rule again:

\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( \tan^2 x + 5x \big)' \big( \csc^2 x + 3 \big) - \big( \csc^2 x + 3 \big)' \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule again:
\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Substitute in derivatives:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2} \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Simplify:

\displaystyle y' = \frac{\big( \tan^2 x + 5x \big) \bigg[ \big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - 2 \sin x \cos x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \bigg]}{\big( \sin^2 x + 6 \big)^2 \big( \csc^2 x + 3 \big)} + \frac{\big( \cos^2 x - 3\sqrt{x} +6 \big) \bigg[ \big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) + 2 \csc^2 x \cot x \big( \tan^2 x + 5x \big) \bigg] }{\big( \csc^2 x + 3 \big)^2 \big( \sin^2 x + 6 \big)}

We can rewrite the differential by factoring and common mathematical properties to obtain our final answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

∴ we have found our derivative.

---

Learn more about derivatives: brainly.com/question/26836290

Learn more about calculus: brainly.com/question/23558817

---

Topic: Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Snowcat [4.5K]3 years ago
5 0

Answer:

General Formulas and Concepts:

Calculus

Differentiation

Derivatives

Derivative Notation

Derivative Property [Multiplied Constant]:

Derivative Property [Addition/Subtraction]:

Derivative Rule [Basic Power Rule]:

f(x) = cxⁿ

f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:

Derivative Rule [Quotient Rule]:

Derivative Rule [Chain Rule]:

Step-by-step explanation:

*Note:

Since the answering box is way too small for this problem, there will be limited explanation.

Step 1: Define

Identify.

Step 2: Differentiate

We can differentiate this function with the use of the given derivative rules and properties.

Applying Product Rule:

Differentiating the first portion using Quotient Rule:

Apply Derivative Rules and Properties, namely the Chain Rule:

Differentiating the second portion using Quotient Rule again:

Apply Derivative Rules and Properties, namely the Chain Rule again:

Substitute in derivatives:

Simplify:

We can rewrite the differential by factoring and common mathematical properties to obtain our final answer:

∴ we have found our derivative.

---

Learn more about derivatives: brainly.com/question/26836290

Learn more about calculus: brainly.com/question/23558817

---

Topic: Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Step-by-step explanation:

You might be interested in
A company wants to test clear deck sealants for weather resistance. Three brands of sealants will be tested using 60 pieces of d
IgorC [24]

Answer:

The Answer is C and D

Step-by-step explanation:

Just did it

4 0
3 years ago
Simplify algebraically ​
Black_prince [1.1K]

Answer:

600,000,000

Step-by-step explanation:

Simplify the expression.

Scientific Notation:

6 ⋅ 10 ^8

Expanded Form:

600000000

8 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=-2%28bx%20-%205%29%20%3D%2016" id="TexFormula1" title="-2(bx - 5) = 16" alt="-2(bx - 5) = 16"
Vinvika [58]

Answer:

bx=-3

Step-by-step explanation:

-2(bx-5)=16

Use distributive property.

-2bx+10=16

Now, subtract 10 from both sides.

-2bx=6

Divide -2 from both sides.

bx=-3

Hope this helps!

If not, I am sorry.

8 0
2 years ago
Read 2 more answers
Nolan used the following procedure to find an estimate for
Arisa [49]

Answer:

What procedure?

Step-by-step explanation:

Nolan used the following procedure to find the estimate for the size of his thighs

Hope this helped if it did plz mark me brainiest Thanks <3333 :3

6 0
3 years ago
Jack shared 200 apples among 6 people then, jack gave 120 candy's among 6 people.what will be the answer for both of them IN ALL
UNO [17]

Answer:

Jack is very rich to have 200 apples and 120 candy's to give away so freely. That is if you are being logical and seeing this from different angles and thinking outside the box

7 0
3 years ago
Other questions:
  • What is 6x^2 + 4x + 8 when x=7
    9·1 answer
  • A satellite travels about 2272 miles in 8 minutes about how many miles does a satellite travel in 3 minutes
    12·1 answer
  • Choose an equation for the relationship between the measures of the segments, angles, and arcs.
    12·2 answers
  • At the corner store, Nico bought 5 pencils for $0.10 each and 3 pens for $0.50 each. He used t to represent the sales tax, in do
    12·2 answers
  • The Science Club went on a two-day field trip. The first day the members paid $40 for transportation plus $18 per ticket to the
    11·1 answer
  • If Katie bought some flowers she use 3/8 of it to bake bread what percent of the flour is left
    13·2 answers
  • In the following scenario for a hypothesis test for a population? mean, decide whether the? z-test is an appropriate method for
    11·1 answer
  • Which equation represents the line through the points (3,2) and (-9,6) ?
    12·1 answer
  • The sum of the ages of Paul and Lindsey is 72 years. 6 years ago, Paul's age was 4 times Lindsey's age. How
    6·1 answer
  • If d = the number of dogs, which variable expression represents the phrase below? the sum of the number of dogs and the 6 cats O
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!