1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
2 years ago
7

Find the derivative of following function.

Mathematics
2 answers:
Aleks04 [339]2 years ago
8 0

Answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

General Formulas and Concepts:
<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (cu)' = cu'

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (uv)' = u'v + uv'

Derivative Rule [Quotient Rule]:
\displaystyle \bigg( \frac{u}{v} \bigg)' = \frac{vu' - uv'}{v^2}

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

Since the answering box is <em>way</em> too small for this problem, there will be limited explanation.

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle y = \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \times \frac{\tan^2 x + 5x}{\csc^2 x + 3}

<u>Step 2: Differentiate</u>

We can differentiate this function with the use of the given <em>derivative rules and properties</em>.

Applying Product Rule:

\displaystyle y' = \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) '

Differentiating the first portion using Quotient Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( \cos^2 x - 3\sqrt{x} + 6 \big)' \big( \sin^2 x + 6 \big) - \big( \sin^2 x + 6 \big)' \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Differentiating the second portion using Quotient Rule again:

\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( \tan^2 x + 5x \big)' \big( \csc^2 x + 3 \big) - \big( \csc^2 x + 3 \big)' \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule again:
\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Substitute in derivatives:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2} \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Simplify:

\displaystyle y' = \frac{\big( \tan^2 x + 5x \big) \bigg[ \big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - 2 \sin x \cos x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \bigg]}{\big( \sin^2 x + 6 \big)^2 \big( \csc^2 x + 3 \big)} + \frac{\big( \cos^2 x - 3\sqrt{x} +6 \big) \bigg[ \big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) + 2 \csc^2 x \cot x \big( \tan^2 x + 5x \big) \bigg] }{\big( \csc^2 x + 3 \big)^2 \big( \sin^2 x + 6 \big)}

We can rewrite the differential by factoring and common mathematical properties to obtain our final answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

∴ we have found our derivative.

---

Learn more about derivatives: brainly.com/question/26836290

Learn more about calculus: brainly.com/question/23558817

---

Topic: Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Snowcat [4.5K]2 years ago
5 0

Answer:

General Formulas and Concepts:

Calculus

Differentiation

Derivatives

Derivative Notation

Derivative Property [Multiplied Constant]:

Derivative Property [Addition/Subtraction]:

Derivative Rule [Basic Power Rule]:

f(x) = cxⁿ

f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:

Derivative Rule [Quotient Rule]:

Derivative Rule [Chain Rule]:

Step-by-step explanation:

*Note:

Since the answering box is way too small for this problem, there will be limited explanation.

Step 1: Define

Identify.

Step 2: Differentiate

We can differentiate this function with the use of the given derivative rules and properties.

Applying Product Rule:

Differentiating the first portion using Quotient Rule:

Apply Derivative Rules and Properties, namely the Chain Rule:

Differentiating the second portion using Quotient Rule again:

Apply Derivative Rules and Properties, namely the Chain Rule again:

Substitute in derivatives:

Simplify:

We can rewrite the differential by factoring and common mathematical properties to obtain our final answer:

∴ we have found our derivative.

---

Learn more about derivatives: brainly.com/question/26836290

Learn more about calculus: brainly.com/question/23558817

---

Topic: Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Step-by-step explanation:

You might be interested in
Which of the following numbers are in scientific notation?​
Alekssandra [29.7K]

Answer:

Step-by-step explanation:

third option I believe

7 0
3 years ago
SOMEONE PLEASE HELP ME ASAP PLEASE!!!!​
ehidna [41]

Answer:

Therefore,

a_{21}=2

Step-by-step explanation:

Given:

A=\left[\begin{array}{ccc}3&6&9\\2&4&8\\\end{array}\right]

To Find:

a₂₁ = ?

Solution:

Let,

A=\left[\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\\end{array}\right]

We require  ' a₂₁ ' i.e Second Row First Column Element

So on Comparing we get

∴ a_{21}=2

Therefore,

a_{21}=2

5 0
3 years ago
A box contains 16 cherry fruit chews,15 beach fruit chews ,and 12 plum fruit chews .which two flavors are in the ratio 5 to 4
olga_2 [115]
The beach (wt_f) and the plum chews.
7 0
3 years ago
Read 2 more answers
Round fraction as a decimal round three decimals place 6/13
frez [133]
Round fraction as a decimal: 6/13=.462 that's the answer
6 0
3 years ago
Bonnie runs at an average speed 4 metres per second for 240 seconds.
telo118 [61]

Answer:

960 metres in 240 seconds.

Step-by-step explanation:

this is because they can run 4 metres every second.

the number of seconds they ran multiplied by the length of their run in a second is your answer.

240 x 4 = 960

6 0
2 years ago
Read 2 more answers
Other questions:
  • Melanie’s bedroom walls are 45% painted. The area of her walls totals 420 square feet. What is the number of square feet of Mela
    8·2 answers
  • Can someone please help me
    7·1 answer
  • How many times greater is the value of the 2 in 420,300 than the value of the 2 in 65,126
    10·2 answers
  • in physical education class Sonia walks a distance of 0.12 Mile in one minute at the rate how far can she walk in 9 minutes
    13·2 answers
  • There are 25 desks in a classroom. The number of rows is five less than twice the number of desks in each row. Find the number o
    13·1 answer
  • 12. Elly's credit card record for the last 7 months is below. Based on the information from the table, what will be her new bala
    6·2 answers
  • One solution, infinitely many solutions, or no solution for #13?
    9·2 answers
  • A high-speed train passes through a 5.4 km long tunnel completely in 1 minute 7.68 seconds.
    10·1 answer
  • What’s 1 + 1?<br> A. 0<br> B. 0<br> C. 0<br> D. 2
    10·1 answer
  • In ALMN, the measure of ZN=90°, the measure of ZL=25°, and LM = 14 feet. Find
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!