Inequalities are used to express unequal expressions.
The inequalities from the word problems are:
The statements from the inequalities are:
- -4 is not a solution to
![\mathbf{x + 8 < -3}](https://tex.z-dn.net/?f=%5Cmathbf%7Bx%20%2B%208%20%3C%20-3%7D)
- -6 is not a solution to
![\mathbf{10 \le 3 - m}](https://tex.z-dn.net/?f=%5Cmathbf%7B10%20%5Cle%203%20-%20m%7D)
- -1 is not a solution to
![\mathbf{-3x \le -12.5}](https://tex.z-dn.net/?f=%5Cmathbf%7B-3x%20%5Cle%20-12.5%7D)
- Graph b represents
![\mathbf{x > -7}](https://tex.z-dn.net/?f=%5Cmathbf%7Bx%20%3E%20-7%7D)
<h3>The word problems</h3>
<u>1. A number minus 3.5 is less than or equal to -2</u>
The statement can be broken down into the following expressions
![\mathbf{A\ number\ minus\ 3.5 \to m - 3.5}](https://tex.z-dn.net/?f=%5Cmathbf%7BA%5C%20number%5C%20minus%5C%203.5%20%5Cto%20m%20-%203.5%7D)
![\mathbf{less\ than\ or\ equal\ to\ -2 \to \le -2}](https://tex.z-dn.net/?f=%5Cmathbf%7Bless%5C%20than%5C%20or%5C%20equal%5C%20to%5C%20-2%20%5Cto%20%5Cle%20-2%7D)
So, when the expressions are brought together, we have:
![\mathbf{m - 3.5 \le -2}](https://tex.z-dn.net/?f=%5Cmathbf%7Bm%20-%203.5%20%5Cle%20-2%7D)
<u>2. Zero is greater than or equal to twice a number x plus 1</u>
The statement can be broken down into the following expressions
![\mathbf{Zero\ is\ greater\ than\ or\ equal\ to \to 0 \ge }](https://tex.z-dn.net/?f=%5Cmathbf%7BZero%5C%20is%5C%20greater%5C%20than%5C%20or%5C%20equal%5C%20to%20%5Cto%200%20%5Cge%20%7D)
![\mathbf{twice\ a\ number\ x\ plus\ 1\ \to 2x + 1}](https://tex.z-dn.net/?f=%5Cmathbf%7Btwice%5C%20a%5C%20number%5C%20x%5C%20plus%5C%201%5C%20%20%5Cto%202x%20%2B%201%7D)
So, when the expressions are brought together, we have:
![\mathbf{0 \ge 2x + 1}](https://tex.z-dn.net/?f=%5Cmathbf%7B0%20%5Cge%202x%20%2B%201%7D)
<u />
<u>3. -1/2 is at least twice a number k minus 4</u>
The statement can be broken down into the following expressions
![\mathbf{-\frac 12\ is\ at\ least \to -\frac 12 \ge }](https://tex.z-dn.net/?f=%5Cmathbf%7B-%5Cfrac%2012%5C%20is%5C%20at%5C%20least%20%5Cto%20-%5Cfrac%2012%20%5Cge%20%7D)
![\mathbf{twice\ a\ number\ k\ minus\ 4\ \to 2k - 4}](https://tex.z-dn.net/?f=%5Cmathbf%7Btwice%5C%20a%5C%20number%5C%20k%5C%20minus%5C%204%5C%20%20%5Cto%202k%20-%204%7D)
So, when the expressions are brought together, we have:
![\mathbf{-\frac12 \ge 2k - 4}](https://tex.z-dn.net/?f=%5Cmathbf%7B-%5Cfrac12%20%5Cge%202k%20-%204%7D)
None of the options is correct
<h3>The solutions</h3>
<u>4. Tell whether -4 is a solution to x + 8 < -3</u>
We have:
![\mathbf{x + 8](https://tex.z-dn.net/?f=%5Cmathbf%7Bx%20%2B%208%20%3C-3%7D)
Subtract 8 from both sides
![\mathbf{x + 8 - 8](https://tex.z-dn.net/?f=%5Cmathbf%7Bx%20%2B%208%20-%208%20%3C-3%20-%208%7D)
![\mathbf{x](https://tex.z-dn.net/?f=%5Cmathbf%7Bx%20%3C-11%7D)
The above inequality means that:
<em>x is less than -11</em>
-4 is not a solution, because -4 is greater than -11
<u>5. Tell whether -6 is a solution to 10 <= 3 - m</u>
We have:
![\mathbf{10 \le 3 - m}](https://tex.z-dn.net/?f=%5Cmathbf%7B10%20%5Cle%203%20-%20m%7D)
Subtract 3 from both sides
![\mathbf{10 -3\le 3 - 3 - m}](https://tex.z-dn.net/?f=%5Cmathbf%7B10%20-3%5Cle%203%20-%203%20-%20m%7D)
![\mathbf{7 \le - m}](https://tex.z-dn.net/?f=%5Cmathbf%7B7%20%5Cle%20%20-%20m%7D)
Multiply both sides by -1 (the inequality sign changes)
![\mathbf{-7 \ge m}](https://tex.z-dn.net/?f=%5Cmathbf%7B-7%20%5Cge%20m%7D)
Make m the subject
![\mathbf{m \le -7}](https://tex.z-dn.net/?f=%5Cmathbf%7Bm%20%5Cle%20-7%7D)
The above inequality means that:
<em>m is less than -7</em>
-6 is not a solution, because -6 is greater than -7
<u>6. Tell whether -1 is a solution to -3x <= -12.5</u>
We have:
![\mathbf{-3x \le -12.5}](https://tex.z-dn.net/?f=%5Cmathbf%7B-3x%20%5Cle%20-12.5%7D)
Divide both sides by -3 (the inequality sign changes)
![\mathbf{x \ge 4\frac16}](https://tex.z-dn.net/?f=%5Cmathbf%7Bx%20%5Cge%204%5Cfrac16%7D)
The above inequality means that:
<em>x is greater than or equal to </em>
<em />
-1 is not a solution, because -1 is less than
<em />
<h3>The graph</h3>
The inequality is given as: ![\mathbf{x > -7}](https://tex.z-dn.net/?f=%5Cmathbf%7Bx%20%3E%20-7%7D)
The less than sign (>) means that:
- The graph would use an open circle
- The arrow must point to the right
Only graph b satisfies this condition
Hence, the graph of
is graph b
Read more about inequalities at:
brainly.com/question/15137133