Answer:
Explanation:
F = ma and
We have F, we have m, but in order to solve for v, we need a.
30.0 = 3.00a so
a = 10.0 m/s/s. Plug that in for a in the second equation and solve for v:
so
v = 10.0(3.00) so
v = 30.0 m/s
Answer:
f = 12 cm
Explanation:
<u>Center of Curvature</u>:
The center of that hollow sphere, whose part is the spherical mirror, is known as the ‘Center of Curvature’ of mirror.
<u>The Radius of Curvature</u>:
The radius of that hollow sphere, whose part is the spherical mirror, is known as the ‘Radius of Curvature’ of mirror. It is the distance from pole to the center of curvature.
<u>Focal Length</u>:
The distance between principal focus and pole is called ‘Focal Length’. It is denoted by ‘F’.
The focal length of the spherical (concave) mirror is approximately equal to half of the radius of curvature:

where,
f = focal length = ?
R = Radius of curvature = 24 cm
Therefore,

<u>f = 12 cm</u>
<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let
be the pressure at a point.
Let
be the density fluid at a point.
Let
be the velocity of fluid at a point.
Bernoulli's equation states that
for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let
be the pressure of a point just above the wing.
Let
be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.

So,
Force is given by the product of pressure difference and area.
Given that area is
.
So,lifting force is 
Answer:


Δd = 
Explanation:
As
, when the car is making full stop,
.
. Therefore,

Apply the same formula above, with
and
, and the car is starting from 0 speed, we have

As
. After
, the car would have traveled a distance of

Hence 
As
we can simplify 
After t time, the train would have traveled a distance of 
Therefore, Δd would be 
Answer:
The time is 
The speed is 
Explanation:
From the question we are told that
The height of the cliff is 
Generally from kinematic equation we have that

before the jump the persons initial velocity is u = 0 m/s
So

=> 
Generally from kinematic equation

=> 
=> 