Answer:
The object is 1.2755 meters above the ground
Explanation:
Recall the formula for gravitational potential energy for an object of mass "m" at a height "h" above the ground:

In this case, since we are given the mass of the object and the object's potential energy, we can estimate the only unknown (height "h") from the formula shown above. Also since all units are given in the SI system, the result for the object's height will result in meters:

I say that is D
because it makes sense
Answer:
(a) Jx = -1.14Ns, Jy = 110×3×10-³ = 0.330Ns (b) V = (0m/s)ı^−(1.79m/s)ȷ^
Explanation:
Given
W = 0.56N = mg
m = 0.56/g = 0.56/9.8 = 0.057kg
t = 3.00ms = 3.00×10-³s
Impulse is a vector quantity so we would treat it as such
We have been given the force and velocity in their component forms so to get the impulse from these quantities, we pick the respective component for the quantity we want to calculate and do the necessary calculation. The masses are scalar quantities and so do not affect the signs used in the calculations whether positive or negative. So we have that
u = (20.0m/s)ı^−(4.0m/s)ȷ^
ux = 20m/s
uy = – 4.0m/s
F = – (380N)ı^+(110N)ȷ^
Fx = –380N
Fy = 110N
J = impulse = force × time = F×t
So Jx = Fx ×t
Jy = Fy×t
Jx = –380×3×10-³ = -1.14Ns
Jy = 110×3×10-³ = 0.330Ns
Impulse also equals the change in momentum of the body. So
J = m(v–u)
J/m = v – u
V= J/m + u
Vx = Jx/m + ux
Vx = –1.14/0.057 + 20
Vx = -20 + 20 = 0m/s
Vx = 0m/s
Vy= Jy/m + uy
Vy= 0.33/0.057 + (-4.0)
Vy= 5.79 + (-4.0) = 1.79m/s
V = (0m/s)ı^−(1.79m/s)ȷ^
Answer:
number line
Explanation: hope this helps lol
Answer:
I believe its: A wave with a shorter wavelength has higher frequency