Answer:
1 KM per minute is the real speed in minutes, turn that into 1000 meters per minute and divided by 60, you get a good number of 16.6666666667 which means you could go 50 meters per 3 seconds
Explanation:
so it would be 16.6666666667 meters per second
Answer and explanation:
The right answer is b) "The excess charge has distributed itself evenly over the outside surface of the sphere".
The hollow metal sphere is a conductor. This means that charges can move freely over its surface. On the other side, a metal body act as an equipotential body. Once some charge is set and there is no voltage differential imprinted over the body, to keep being an equipotential body the charges must distribute evenly on the external surface. Must not exist charge in the volume, or would exist an electrical field and therefore a voltage differential. Also, the charge distribution in the internal surface must be null. If you apply gauss theorem with a gaussian sphere with a radius between the internal and external surface, knowing that field E is null, the enclosed charge must be null.
Answer:
8.756 rad/s²
Explanation:
Given that:
A motorcycle accelerates uniformly from rest, then initial velocity v_i = 0 m/s
It final velocity v_f = 24.8 m/s
time (t) = 9.87 s
radius (r) of each tire = 0.287 m
Firstly; the linear acceleration of the motor cycle is determined as follows:
=(V_f - v_i)/t
=(24.8-0)/9.87
=2.513 m/s²
Then; the magnitude of angular acceleration
α =
/r
=2.513/0.287
=8.756 rad/s²
If the power source is 9.0 volts, the current will
be 0.27 amps. The correct answer between all the
choices given is the third choice or letter C. I am hoping that this answer has
satisfied your query and it will be able to help you, and if you would like,
feel free to ask another question.
V = f * wavelength
as we know electromagnetic wave has speed equal to light, so
3 * 10^8 = f * 1.3
f = 2.3 * 10^8 hertz
f = 230 mega hertz