1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
5

Please select the word from the list that best fits the definition

Physics
1 answer:
enyata [817]3 years ago
8 0

Answer:

conductor

Does not easily transfer electricity

You might be interested in
I don't understand how to find the frequency and period of wavelengths. Can anyone help me?
nordsb [41]

Frequency of a wave =

                 (speed of the wave) divided by (wavelength)
or
                 (1) divided by (period of the wave) .


Period of the wave =

                   (wavelength) divided by (speed of the wave)
or
                   (1) divided by (frequency of the wave) .
3 0
3 years ago
An electron is trapped in an infinite square-well potential of width 0.6 nm. If the electron is initially in the n = 4 state, wh
grandymaker [24]

Answer:

E₁ = 1.042 eV

E₄₋₃= 7.29 eV      

E₄₋₂= 12.50 eV

E₄₋₁= 15.63 eV

E₃₋₂= 5.21eV

E₃₋₁= 8.34eV

E₂₋₁= 3.13eV

Explanation:

The energy in an infinite square-well potential is giving by:  

E = \frac {h^{2} n^{2}}{8mL^{2}}      

<em>where, h: Planck constant = 6.62x10⁻³⁴J.s, n: is the energy state, m: mass of the electron and L: widht of the square-well potential </em>      

<u>The energy of the electron in the ground state, </u><u>n = 1</u><u>, is:  </u>

E_{1} = \frac {(6.62 \cdot 10^{-34})^{2} (1)^{2}}{(8) (9.11 \cdot 10^{-31}) (0.6 \cdot 10^{-9} m)^{2}}    

E_{1} = 1.67 \cdot 10^{-19} J = 1.042 eV      

The photon energies that are emitted as the electron jumps to the ground state is the difference between the states:                      

E_{\Delta n} = \Delta n^{2} E_{1}  

E_{(4 - 3)} = (4^{2} - 3^{2}) 1.042 eV = 7.29eV

E_{(4 - 2)} = (4^{2} - 2^{2}) 1.042 eV = 12.50eV

E_{(4 - 1)} = (4^{2} - 1^{2}) 1.042 eV = 15.63eV

E_{(3 - 2)} = (3^{2} - 2^{2}) 1.042 eV = 5.21eV

E_{(3 - 1)} = (3^{2} - 1^{2}) 1.042 eV = 8.34eV

E_{(2 - 1)} = (2^{2} - 1^{2}) 1.042 eV = 3.13eV    

Have a nice day!                          

7 0
3 years ago
When doing scientific research ,the sources used should be ?
quester [9]

Answer: Reliable and trusted

6 0
3 years ago
Read 2 more answers
In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of t
muminat
<h2><em><u>⇒</u></em>Answer:</h2>

In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)

Step-by-Step Solution:

Solution 35PE

This question discusses about the increased range. So, we shall assume that the angle of jumping will be  as the horizontal range is maximum at this angle.

Step 1 of 3<

/p>

The legs have an extension of 0.600 m in the crouch position.

So,  m

The person is at rest initially, so the initial velocity will be zero.

The acceleration is  m/s2

Acceleration  m/s2

Let the final velocity be .

Step 2 of 3<

/p>

Substitute the above given values in the kinematic equation  ,

m/s

Therefore, the final velocity or jumping speed is  m/s

Explanation:

3 0
3 years ago
Read 2 more answers
Which of the following is NOT a result of supernova explosions? The neutron core is completely destroyed. Any planets within a f
DanielleElmas [232]

Answer:

 The neutron core is completely destroyed

Explanation:

 A earth - supernova is an explosion resulting to the death of a star that occurs close enough to the earth but this does not completely destroy a star. Supernovae are the most violent explosions in the universe. But they do not explode like a bomb explodes, blowing away every bit of the original bomb. Rather, when a star explodes into a supernova, its core survives. The reason for this is that the explosion is caused by a gravitational rebound effect and not by a chemical reaction. Stars are so large that the gravitational forces holding them together are strong enough to keep the nuclear reactions from blowing them apart. It is the gravitational rebound that blows apart a star in a supernova.

4 0
3 years ago
Other questions:
  • A force of 50 pounds is directed 30 from the horizontal, find the vector that represents this force.
    12·1 answer
  • The Hubble space telescope has been maintained by which of these?
    14·1 answer
  • One game at the amusement park has you push a puck up a long, frictionless ramp. You win a stuffed animal if the puck, at its hi
    6·1 answer
  • A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the spring, and the motion takes place in a v
    14·1 answer
  • Choose
    14·1 answer
  • The weight of the North American P-51 Mustang airplane is 10,100 lb and its wing platform area is 233 ft2 . Calculate the wing l
    12·1 answer
  • A machine is brought in to accomplish a task which requires 100 ft.-lbs. of work. Which statements are correct:
    7·1 answer
  • A construction worker uses an electrical device to attract fallen nails and sharp objects
    10·1 answer
  • Please help! this is timed!
    14·2 answers
  • 3
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!