Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.
Answer:
<u>Example of Newton's III law</u>
- In the, golf the ball was hit by a club with certain force. As the club hits the ball it's the action. When the ball flies away its the reaction.
- When a person swings a golf club at the ball, when it hits the ball, it causes the ball to roll up the face of the club and into the air towards the target.
Answer:
Distance: 75 km
Displacement: 45 km
Explanation:
- Distance is a scalar quantity that refers to the total space covered by an object. It is calculated as the sum of the distances covered in each motion, regardless of their direction. therefore in this case:
distance = 60 km + 15 km = 75 km
- Displacement is a vector quantity whose magnitude is equal to the difference between the final point and the starting point of the motion, so it also takes into account the direction of each motion. In this case, the truck moves 60 km east, and then 15 km west: if we call '0' the starting point, the final point will be then

And so the displacement is

It weakened the gravitational force between the oblects.