1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
12

Calvin encoded a secret phrase using matrix multiplication. Using A = 1, B = 2, C = 3, and so on, he multiplied the clear text c

ode for each letter by the matrix c=3 -2 4 -3 to get a matrix that represents the encoded text. The matrix representing the encoded text is...... What is the secret phrase? Determine the location of spaces after you decode the text.

Mathematics
1 answer:
Vlad1618 [11]3 years ago
8 0
Our matrix C is the encoder.  Let X be our secret message and let B be our encoded message.  Therefore the relationship between the 3 can be represented as:

CX = B

So we want to solve for X (our secret message). So using matrix algebra:

X = C^-1*B
where C^-1 is the inverse of C.

C^-1 = | 3 -2 |
           |4 -3 |

So we take C^-1 and multiply it by matrix B to get X.  Matrix B is already given to us.  So just multiply those two.  I used a calculator to get:

X = | 20 8 5 3 15 12 15 |
      | 18 9 19 2 12 21 5 |

And since A = 1, B = 2, C = 3, etc....

We decode our message and it says:

X = | T H E C O L O |
      | R I S B L U E |

So the answer is: The color is blue (D)
You might be interested in
Pls do both for ( brainlist, thanks, and a 5 star review)
JulijaS [17]

Answer

2/3+5/6= is 1.5

Step-by-step explanation:

first do 2/3=0.66666666666

and 5/6=0.83333333333

then do 0.66666666666+0.83333333333=1.5

3 0
2 years ago
Read 2 more answers
Find the vertices and foci of the hyperbola. 9x2 − y2 − 36x − 4y + 23 = 0
Xelga [282]
Hey there, hope I can help!

NOTE: Look at the image/images for useful tips
\left(h+c,\:k\right),\:\left(h-c,\:k\right)

\frac{\left(x-h\right)^2}{a^2}-\frac{\left(y-k\right)^2}{b^2}=1\:\mathrm{\:is\:the\:standard\:equation\:for\:a\:right-left\:facing:H}
with the center of (h, k), semi-axis a and semi-conjugate - axis b.
NOTE: H = hyperbola

9x^2-y^2-36x-4y+23=0 \ \textgreater \  \mathrm{Subtract\:}23\mathrm{\:from\:both\:sides}
9x^2-36x-4y-y^2=-23

\mathrm{Factor\:out\:coefficient\:of\:square\:terms}
9\left(x^2-4x\right)-\left(y^2+4y\right)=-23

\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}9
\left(x^2-4x\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}

\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}1
\frac{1}{1}\left(x^2-4x\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}

\mathrm{Convert}\:x\:\mathrm{to\:square\:form}
\frac{1}{1}\left(x^2-4x+4\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)

\mathrm{Convert\:to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)

\mathrm{Convert}\:y\:\mathrm{to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y^2+4y+4\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right)

\mathrm{Convert\:to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y+2\right)^2=-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right)

\mathrm{Refine\:}-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right) \ \textgreater \  \frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y+2\right)^2=1 \ \textgreater \  Refine
\frac{\left(x-2\right)^2}{1}-\frac{\left(y+2\right)^2}{9}=1

Now rewrite in hyperbola standardform
\frac{\left(x-2\right)^2}{1^2}-\frac{\left(y-\left(-2\right)\right)^2}{3^2}=1

\mathrm{Therefore\:Hyperbola\:properties\:are:}\left(h,\:k\right)=\left(2,\:-2\right),\:a=1,\:b=3
\left(2+c,\:-2\right),\:\left(2-c,\:-2\right)

Now we must compute c
\sqrt{1^2+3^2} \ \textgreater \  \mathrm{Apply\:rule}\:1^a=1 \ \textgreater \  1^2 = 1 \ \textgreater \  \sqrt{1+3^2}

3^2 = 9 \ \textgreater \  \sqrt{1+9} \ \textgreater \  \sqrt{10}

Therefore the hyperbola foci is at \left(2+\sqrt{10},\:-2\right),\:\left(2-\sqrt{10},\:-2\right)

For the vertices we have \left(2+1,\:-2\right),\:\left(2-1,\:-2\right)

Simply refine it
\left(3,\:-2\right),\:\left(1,\:-2\right)
Therefore the listed coordinates above are our vertices

Hope this helps!

8 0
3 years ago
Arthur’s employer withheld $15987.76 in federal income tax. After completing his return, Arthur has determined that his tax is $
Lerok [7]
I don’t know the answer
6 0
2 years ago
I have several other questions
Licemer1 [7]

Answer:

81 m²

Step-by-step explanation:

A = 6*10 + 7*6/2

= 60 + 7*3

= 60 + 21

= 81 m²

6 0
3 years ago
Can someone help out? or explain? ​
Nataliya [291]
Y = 90 degrees

1) The angles on a straight line add to 180 degrees so 180-110= 70 degrees.

2) The angles in a triangle add to 180 degrees so 70+70= 140 degrees. The angle at the top of the triangle will have to be 40 degrees as 140+40= 180 degrees.

3) As x is half the angle at the top of the triangle (40 degrees), x will equal 20 degrees.

4) As the angles in a triangle add to 180 degrees 20+70=90 degrees 180-90=90 degrees.

5) Answer = 90 degrees

7 0
2 years ago
Other questions:
  • -3x-8=19 -3x-2=25 A. The equations have the same solution because the second equation can be obtained by subtracting 19 from bot
    6·1 answer
  • Hurry please! 15 Points!
    10·1 answer
  • Find the derivative of 3X(X^ +1)½​
    13·1 answer
  • Find the midpoint and length between each pair of points. (5,5) (-1,3)<br><br> PLEASE HELP!!
    9·1 answer
  • Is 0.99 an repeating number
    6·1 answer
  • In the diagram, the measure of angle 3 is 76°. A transversal intersects 2 lines to form 8 angles. Clockwise from top left, the a
    7·1 answer
  • Find the interquartile range of the following data set:
    14·1 answer
  • Plzzz giving brainilest no cap
    5·1 answer
  • What is 35% of 50?<br> A. 17.5<br> B. 35<br> C. 85<br> D.142
    8·1 answer
  • What is the measure of angle y?<br> 12 pts.)<br> 52°<br> Y show ur work 30 points
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!