1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
3 years ago
14

Buckminsterfullerene is an allotrope of carbon that is found in:

Chemistry
1 answer:
jarptica [38.1K]3 years ago
3 0
Bucky balls, or bucksminsterfullerene, can be found in Soot in small quantities.
You might be interested in
aluminum has a density or 2.7g/cm3. copper has a density of 8.96/cm3. which metal would you choose to build a model airplane?
erik [133]

Answer: Aluminium

Explanation: Aluminium metal has a lower density than copper. So, for the same volume of metal used to build a model airplane, the aluminium plane would be very lightweight while that of copper would be heavy.  The lightweight airplane will fly easily.

7 0
3 years ago
Which sound has waves with the greatest amplitude?'
Furkat [3]
Jet Takeoff because it is the loudest according to the chart by the number of decibels.
8 0
3 years ago
How many grams of sodium acetate ( molar mass = 83.06 g/mol ) must be added to 1.00 Liter of a 0.200 M acetic acid solution to m
Pie

<u>Answer:</u> The mass of sodium acetate that must be added is 30.23 grams

<u>Explanation:</u>

To calculate the number of moles for given molarity, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}

Molarity of acetic acid solution = 0.200 M

Volume of solution = 1 L

Putting values in above equation, we get:

0.200M=\frac{\text{Moles of acetic acid}}{1L}\\\\\text{Moles of acetic acid}=(0.200mol/L\times 1L)=0.200mol

To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:

pH=pK_a+\log(\frac{[\text{salt}]}{[\text{acid}]})  

pH=pK_a+\log(\frac{[CH_3COONa]}{[CH_3COOH]})

We are given:

pK_a = negative logarithm of acid dissociation constant of acetic acid = 4.74

[CH_3COONa]=?mol  

[CH_3COOH]=0.200mol

pH = 5.00

Putting values in above equation, we get:

5=4.74+\log(\frac{[CH_3COONa]}{0.200})

[CH_3COONa]=0.364mol

To calculate the mass of sodium acetate for given number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}

Molar mass of sodium acetate = 83.06 g/mol

Moles of sodium acetate = 0.364 moles

Putting values in above equation, we get:

0.364mol=\frac{\text{Mass of sodium acetate}}{83.06g/mol}\\\\\text{Mass of sodium acetate}=(0.364mol\times 83.06g/mol)=30.23g

Hence, the mass of sodium acetate that must be added is 30.23 grams

7 0
3 years ago
When 45 g of an alloy, at 25oC, are dropped into 100.0 g of water, the alloy absorbs 956 J of heat. If the final temperature of
taurus [48]

Answer:

The answer to the question is

The specific heat capacity of the alloy = 1.77 J/(g·°C)

Explanation:

To solve this, we list out the given variables thus

Mass of alloy = 45 g

Initial temperature of the alloy = 25 °C

Final temperature of the alloy = 37 °C

Heat absorbed by the alloy = 956 J

Thus we have

ΔH = m·c·(T₂ - T₁) where  ΔH = heat absorbed by the alloy = 956 J, c = specific heat capacity of the alloy and T₁ = Initial temperature of the alloy = 25 °C , T₂ = Final temperature of the alloy = 37 °C  and m = mass of the alloy = 45 g

∴ 956 J = 45 × C × (37 - 25) = 540 g·°C×c  or

c = 956 J/(540 g·°C) = 1.77 J/(g·°C)

The specific heat capacity of the alloy is 1.77 J/(g·°C)

3 0
3 years ago
Find the pH of a 0.100 molar H2C6O6 solution with ka, where KA is equal 8.0×10–5​
lubasha [3.4K]

The pH of the solution is 2.54.

Explanation:

pH is the measure of acidity of the solution and Ka is the dissociation constant. Dissociation constant is the measure of concentration of hydrogen ion donated to the solution.

The solution of C₆H₂O₆ will get dissociated as C₆HO₆ and H+ ions. So the molar concentration of 0.1 M is present at the initial stage. Lets consider that the concentration of hydrogen ion released as x and the same amount of the base ion will also be released.

So the dissociation constant Kₐ can be written as the ratio of concentration of products to the concentration of reactants. As the concentration of reactants is given as 0.1 M and the concentration of products is considered as x for both hydrogen and base ion. Then the

K_{a}=\frac{[H^{+}][HB] }{[reactant]}

[HB] is the concentration of base.

8 * 10^{-5} =\frac{x^{2}  }{0.1}\\\\\\x^{2} = 8 * 10^{-5}*0.1

x^{2} = 0.08 * 10^{-4}\\ \\x = 0.283*10^{-2}

Then

pH = - log [x] = - log [ 0.283 * 10^{-2}]\\ \\pH = 2 + 0.548 = 2.54

So the pH of the solution is 2.54.

4 0
3 years ago
Other questions:
  • Is lead found in diamonds
    12·1 answer
  • Each energy level of an atom has a maximum number of ____ it can hold.
    6·1 answer
  • How did Mendeleev arrange the known elements in his periodic table?
    8·1 answer
  • !!!!HELP ASAP 10 points!!!Which of the following families contains liquids, solids, and gases?
    12·2 answers
  • A compound is made of copper, nitrogen, and oxygen atoms. A sample of the compound has 6.4 grams of copper, 2.8 grams of nitroge
    5·1 answer
  • What type of properties change ina physical change? Give an example to support your answer?
    15·1 answer
  • This element has 80 electrons and is considered a transitional element. What am I?
    13·1 answer
  • Now we need to find the amount of NF3 that can be formed by the complete reactions of each of the reactants. If all of the N2 wa
    11·1 answer
  • 31. Solve this Gibbs' Free Energy Equation:
    7·1 answer
  • 8.13 x 10^6J to kcal
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!