<h2><u>Answer:</u></h2>
It wasn't an adjustment in the condition of issue on the grounds that the vitality in the can did not change. Additionally, since this was a physical change, the atoms in the can are as yet similar particles. No synthetic bonds were made or broken. You added enough vitality to make a stage change from strong to fluid.
The main changes recorded which don't include framing or breaking substance bonds would bubble and liquefying. Bubbling and liquefying are physical changes as opposed to synthetic changes, so no new items are shaped.
Answer:
![[NO]=\frac{k_{-1}}{k_1} [N_2O_2]](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Cfrac%7Bk_%7B-1%7D%7D%7Bk_1%7D%20%5BN_2O_2%5D)
Explanation:
Hello!
In this case, since the reaction may be assumed in chemical equilibrium, we can write up the rate law as shown below:
![r=-k_1[NO]+k_{-1}[N_2O_2]](https://tex.z-dn.net/?f=r%3D-k_1%5BNO%5D%2Bk_%7B-1%7D%5BN_2O_2%5D)
However, since the rate of reaction at equilibrium is zero, due to the fact that the concentrations remains the same, we can write:
![0=-k_1[NO]+k_{-1}[N_2O_2]](https://tex.z-dn.net/?f=0%3D-k_1%5BNO%5D%2Bk_%7B-1%7D%5BN_2O_2%5D)
Which can be also written as:
![k_1[NO]=k_{-1}[N_2O_2]](https://tex.z-dn.net/?f=k_1%5BNO%5D%3Dk_%7B-1%7D%5BN_2O_2%5D)
Then, we solve for the concentration of NO to obtain:
![[NO]=\frac{k_{-1}}{k_1} [N_2O_2]](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Cfrac%7Bk_%7B-1%7D%7D%7Bk_1%7D%20%5BN_2O_2%5D)
Best regards!
The correct answer would be false
Hope this helped! ☺
Answer:
Painting with an oil based paint
Galvinization
Alloying
Explanation: