Let's say you want to compute the probability

where

converges in distribution to

, and

follows a normal distribution. The normal approximation (without the continuity correction) basically involves choosing

such that its mean and variance are the same as those for

.
Example: If

is binomially distributed with

and

, then

has mean

and variance

. So you can approximate a probability in terms of

with a probability in terms of

:

where

follows the standard normal distribution.
Formula for finding percent change (increase or decrease) is amount of the change divided by the original amount.
Here, the amount of the change is 50 and the original amount is 250.
50/250= 0.2
Multiply by 100 to get percent.
20% decrease (because budget went down)
Answer:
1 g/cm³
Step-by-step explanation:
Volume of the model:
V=1/3bh= 1/3*100*6= 300 cm³
Density= weight/volume= 300 g/300 cm³= 1 g/cm³
The lowest density is 1 g/cm³
17.05 I think..
this could be it idrk what it is
You first need to make sure the denominators are equal, then when they are, you can add/subtract the numerators. Then you can place the result over the common denominator.
I hope this helps! :)