Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π → A + B = π - C
→ B + C = π - A
→ C + A = π - B
→ C = π - (B + C)
Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]
Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B
Use the Double Angle Identity: sin 2A = 2 sin A · cos A
Use the Cofunction Identity: cos (π/2 - A) = sin A
<u>Proof LHS → Middle:</u>





![\text{Factor:}\quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cquad%20%20%3D2%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Cbigg%5B%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B4%7D%5Cbigg%29%2B%5Csin%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Cbigg%5D)
![\text{Cofunction:}\quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]](https://tex.z-dn.net/?f=%5Ctext%7BCofunction%3A%7D%5Cquad%20%20%3D2%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Cbigg%5B%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B4%7D%5Cbigg%29%2B%5Ccos%20%5Cbigg%28%5Cdfrac%7B%5Cpi%7D%7B2%7D-%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Cbigg%5D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D2%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B4%7D%5Cbigg%29%2B%5Ccos%20%5Cbigg%28%5Cdfrac%7B2%5Cpi-%28A%2BB%29%7D%7B4%7D%5Cbigg%29%5Cbigg%5D)
![\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5C%202%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Cbigg%5B2%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B2%5Cpi-2B%7D%7B2%5Ccdot%204%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A-2%5Cpi%7D%7B2%5Ccdot%204%7D%5Cbigg%29%5Cbigg%5D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D4%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B%5Cpi-B%7D%7B4%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B%5Cpi%20-A%7D%7B4%7D%5Cbigg%29)

LHS = Middle 
<u>Proof Middle → RHS:</u>

Middle = RHS 
Answer:
The world record for the 200-m dash will be set at 18.0 seconds in the year 2920.
Step-by-step explanation:
To find what year the record will be 18 seconds, substitute 18 in for R, and solve for t.
-0.0028t + 20.8 = R
-0.0028t + 20.8 = 18
-0.0028t = -2.8
t = 1000
The record for the 200-m dash will be 18 seconds after 1000 years. To find which year this record will be set in, add 1000 to the original date, 1920.
1920 + 1000 = 2920
Answer:
2.5
Step-by-step explanation:
5/2=2.5
half of 2 is 1 so for 1 cup of coco has 2.5 tbs of coco.
Answer:
-9j+5
combine like terms to get this answer
Answer: x =2
Step-by-step explanation:
5x - 8 = 3x - 4
2x = 4
x = 2
checking the work:
5(2) - 8 = 3(2) - 4
10 - 8 = 6 - 4
2 = 2