1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
4 years ago
5

The vertices of rectangle ABCD are A(3, 1), B(-5, 1),

Mathematics
1 answer:
OlgaM077 [116]4 years ago
4 0
The answer is (3,-1)
You might be interested in
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
The equation R=-0.0028t+20.8 can be used to predict the world record in the 200-m dash, where R is the record in seconds and t i
Finger [1]

Answer:

The world record for the 200-m dash will be set at 18.0 seconds in the year 2920.

Step-by-step explanation:

To find what year the record will be 18 seconds, substitute 18 in for R, and solve for t.

-0.0028t + 20.8 = R

-0.0028t + 20.8 = 18

-0.0028t = -2.8

t = 1000

The record for the 200-m dash will be 18 seconds after 1000 years. To find which year this record will be set in, add 1000 to the original date, 1920.

1920 + 1000 = 2920



8 0
4 years ago
Claire makes hot coco with 2 cups of milk with 5 tablespoons of coco. How many tablespoons of coco would he need for 1 cup of mi
postnew [5]

Answer:

2.5

Step-by-step explanation:

5/2=2.5

half of 2 is 1 so for 1 cup of coco  has 2.5 tbs of coco.

6 0
4 years ago
Read 2 more answers
-4j-1-5j+6= pls help me
alukav5142 [94]

Answer:

-9j+5

combine like terms to get this answer

7 0
3 years ago
Read 2 more answers
Subtract 8 from 5 times a number. The result is 4 less than 3 times the number.
vovikov84 [41]

Answer: x =2

Step-by-step explanation:

5x - 8 = 3x - 4

2x = 4

x = 2

checking the work:

5(2) - 8 = 3(2) - 4

10 - 8 = 6 - 4

2 = 2

4 0
3 years ago
Other questions:
  • What is equivalent to 921/2 pounds
    10·1 answer
  • A boat dealers sells 7 fishing boats for every 3 speed boats it sells
    8·1 answer
  • Two gongs strike at intervals of 24 and 40minutes respectively. At twist time will they strike together again if they start simu
    8·1 answer
  • What is more 4/5 or 0.71 and what is more 1.2 or 1 and 2/9
    8·1 answer
  • Please HELP ITS URGENT​
    14·1 answer
  • How do you divide 336 by 6 by long dvision step by step?
    15·1 answer
  • The volume of a cube is a function of the side length. Similarly the surface area of a cube is a function of its side length whi
    15·1 answer
  • Find the missing length indicatedOk
    7·1 answer
  • If two sides of a triangle measure 19 cm and 34 cm, check all possible values for the third side.
    6·1 answer
  • X/6 = 2 ,x = ?<br> who can help me
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!