Answer: 4 • (2x - 7) • (x + 3)
Step-by-step explanation:
(4x+12)(2x-7)
8x²-28x+24x-84
8x²-4x-84
Trigonometry can be used to determine the height of a cell phone tower by using SOH CAH TOA or the Pythagorean theorem. If you look at it as a right triangle you can figure out how tall the tower is. If an angle is given (not a 90°angle) and the value of a side you can figure out all of the sides on the theoretical right triangle. Including the height of the tower.
Answer:
y = -(5/2)x -2
Explanation:
The general formula for a straight line is y – mx + b.
The image below shows the graph of the line.
Step 1. <em>Calculate the slope</em>.
Slope = m = Δy/Δx = (y₂-y₁)/(x₂-x₁)
x₁ = 0; y₁ = -2
x₂ = -2; y₂ = 3 Calculate m
m = [3-(-2)]/(-2-0)
m = (3+2)/(-2)
m = 5/(-2)
m = -5/2
Step 2. <em>Calculate the y-intercept
</em>
When x = 0, y = 2.
The y-intercept (b) is at y = -2
Step 3. <em>Write the equation </em>for the graph
y = mx + b
y = -(5/2)x - 2
Answer:
46p
Step-by-step explanation:
42*1.09=45.78
45.78 rounded up is 46p
If tan0=-3/4 and 0 is in quadrant IV, cos20= (33/25, -17/25, 32/25, 7/25, 24/25?) and tan20= (24/7, -24/7, 7/25, -7/25, 13/7, -1
Oksana_A [137]
Answer:
- cos(2θ) = 7/25
- tan(2θ) = -24/7
Step-by-step explanation:
Sometimes, it is easiest to let a calculator do the work. (See below)
__
The magnitude of the tangent is less than 1, so the reference angle will be less than 45°. Then double the angle will be less than 90°, so will remain in the 4th quadrant, where the cosine is positive and the tangent is negative.
You can also use the identities ...
cos(2θ) = (1 -tan(θ)²)/(1 +tan(θ)²)
cos(2θ) = (1 -(-3/4)²)/(1 +(-3/4)²) = ((16-9)/16)/((16+9)/16)
cos(2θ) = 7/25
__
tan(2θ) = 2tan(θ)/(1 -tan(θ)²) = 2(-3/4)/((16-9/16) = (-6/4)(16/7)
tan(2θ) = -24/7