You may know linear momentum is given by
P= mass.velocity.
Initially car is moving with some velocity so you know initial momentum of the car. Finally it comes to rest i.e final momentum of the car is 0. According to Newton's second law : Force = change in momentum /time. Applying this you'll get answer as 642840N. Hope it helped you. Revert back to me if you have any questions. Please check out the calculation it might be wrong!
Intrusive igneous rocks cool down from magma slowly because they form underneath the surface, that will make them have large crystals.
Extrusive igneous rocks cool down from lava rapidly because they form at the surface, so that will make them have small crystals.
Answer:
v = 4.76 m/s
Explanation:
Given,
The distance traveled by her bike, d = 10 miles
The time of her travel, t = 2.1 m/s
The velocity of an object is defined as the distance traveled by the object to the time of travel. Therefore,
V = d/t m/s
= 10 / 2.1
= 4.76 m/s
Hence, The velocity of her bike is, V = 4.76 m/s
Answer:
A) 140 k
b ) 5.22 *10^3 J
c) 2910 Pa
Explanation:
Volume of Monatomic ideal gas = 1.20 m^3
heat added ( Q ) = 5.22*10^3 J
number of moles (n) = 3
A ) calculate the change in temp of the gas
since the volume of gas is constant no work is said to be done
heat capacity of an Ideal monoatomic gas ( Q ) = n.(3/2).RΔT
make ΔT subject of the equation
ΔT = Q / n.(3/2).R
= (5.22*10^3 ) / 3( 3/2 ) * (8.3144 J/mol.k )
= 140 K
B) Calculate the change in its internal energy
ΔU = Q this is because no work is done
therefore the change in internal energy = 5.22 * 10^3 J
C ) calculate the change in pressure
applying ideal gas equation
P = nRT/V
therefore ; Δ P = ( n*R*ΔT/V )
= ( 3 * 8.3144 * 140 ) / 1.20
= 2910 Pa
Because cool air rises and warm air falls, so if you wanted the cooler air, you would need to go to higher elevation