My guess would be because the gravity from the Earth's core is constantly pulling the ball towards the ground. It's like the moon. Why doesn't the moon just float away in space? Because Earth's gravitational pull keeps it rotating around it. Therefore, the ball will always be pulled towards the core which keeps it from from rolling forever due to friction. But i may be wrong, even though this a quite a good answer, hope it is right!
British realized their northern strategy had failed
This is a way of measuring how much gravity there is. The formula is: weight/mass = gravitational field strength.
Gravitational field strength = Weight/mass unit is N/kg
Weight = mass x gravitational field strength unit is N
On Earth the gravitational field strength is 10 N/kg. Other planets have different gravitational field strengths. The Moon has a gravitational field strength of 1.6 N/kg. You might have seen films of astronauts leaping high on the moon.
Here on Earth, if I jump I am pulled back to ground by gravity. What is my weight? My mass is 80kg and if we multiply by gravitational field strength (10N/kg) - my weight is 800N. Now if I go to the moon, my mass will be the same, 80kg. We multiply that by the moon's gravitational field strength, which is 1.6 N/ kg. That means my weight on the moon is 128N. So I have different weights on the Earth and on the Moon. That's why astronauts can jump high into the air on the moon - they're lighter up there.
Jupiter is a very large planet with strong gravitational field strength of 25 N/ kg. My body is 80kg. If I go to Jupiter my weight is going to be 25 x 80 = 2,000 N. That means I wouldn't be able to get off the ground or stand up straight! I would probably be lying down all the time there. So weight varies depending on which planet you are on. You can find out more yourself by looking up tables of weight on different planets.
Absolutely, as anomilies can show inconsistencies with data and hypothesis they may have and may actually assist in refining the accuracyof their ideas by not only encompassing the most commonly-occuring phenomena, but also the more seldom occuring scenarios as well.