1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
3 years ago
10

What power does a toaster with 15 A of current and 20 Ωof resistance consume?

Physics
2 answers:
zavuch27 [327]3 years ago
8 0

Answer:

4500W

Explanation:

P =  {I}^{2} R

where P = Power consumed , I = Current & R = Resistance.

In the question it's given that

I = 15A ; R = 20Ω

So ,

P =  {15}^{2}\times 20 = 225 \times 20 = 4500W

olganol [36]3 years ago
3 0
4500w is the answer to this question
You might be interested in
True or False:In a current, electrons will always flow from negative to positive.
DIA [1.3K]
It should be true: electrons low from negative toward positive to negative toward positive because opposite charges attract each other.

I hope this was correct
3 0
3 years ago
Read 2 more answers
To use Faraday's law for this problem, you will need to construct a suitable loop, around which you will integrate the electric
VikaD [51]

Answer:

a. xy

Explanation:

The Faraday's law of induction can be used to express the relationship between the electric field line integral and the magnetic flux rate change in a closed loop. In order to ensure that the relationship between the two variables is equivalent to zero, the integration should be conducted on the xy plane. The correct option is option a.

6 0
3 years ago
liquid helium has a very low boiling point, 4.2 k, as well as a very low latent heat of vaporization, 2.00 104 j/kg. if energy i
aksik [14]

4.80 \times 10^3 \text { seconds }  long does it take to boil away 2.40 kg of the liquid.

Boiling point of He is $T=4.2 \mathrm{k}$

Latent heat of vapourization $L=2.00 \times 10^4 \mathrm{~J} / \mathrm{kg}$

Power of electrical heater $P=30 \mathrm{w}$

mass of liquid is $m=2.40 \mathrm{~kg}$

amount of heat required to boil

$$\begin{aligned}&Q=m L \\&Q=2.40 \times 2 \times 10^4 \mathrm{~J} \\&Q=4.80 \times 10^4 \mathrm{~J}\end{aligned}$$

Power $p=\frac{\text { work }}{\text { time }}=\frac{\text { Energy }}{\text { Time }}$

$$\begin{aligned}P &=\frac{Q}{t} \\\text { tine } t &=\frac{Q}{P}=\frac{4.80 \times 10^4 \mathrm{~J}}{10} \\t &=4.80 \times 10^3 \text { seconds }\end{aligned}$$

The heat or energy that is absorbed or released during a substance's phase shift is known as latent heat. It could go from a solid to a liquid or from a liquid to a gas, or vice versa. Enthalpy, a characteristic of heat, is connected to latent heat.

The heat that is used or lost as matter melts and transitions from a solid to a fluid form at a constant temperature is known as the latent heat of fusion.

Due to the fact that during softening the heat energy anticipated to transform the substance from solid to fluid at air pressure is the latent heat of fusion and that the temperature remains constant during the process, the "enthalpy" of fusion is a latent heat. The enthalpy change of any quantity of material during dissolution is known as the latent heat of fusion.

For learn more about Latent heat of vaporization, visit: brainly.com/question/14980744

#SPJ4

3 0
1 year ago
If it is fixed at C and subjected to the horizontal 60-lblb force acting on the handle of the pipe wrench at its end, determine
pickupchik [31]

Answer:

τ = 132.773 lb/in² = 132.773 psi

Explanation:

b = 12 in

F = 60 lb

D = 3.90 in (outer diameter)  ⇒ R = D/2 = 3.90 in/2 = 1.95 in

d = 3.65 in (inner diameter)  ⇒ r = d/2 = 3.65 in/2 = 1.825 in

We can see the pic shown in order to understand the question.

Then we get

Mt = b*F*Sin 30°

⇒ Mt = 12 in*60 lb*(0.5) = 360 lb-in

Now we find ωt as follows

ωt = π*(R⁴ - r⁴)/(2R)

⇒ ωt = π*((1.95 in)⁴ - (1.825 in)⁴)/(2*1.95 in)

⇒ ωt = 2.7114 in³

then the principal stresses in the pipe at point A is

τ = Mt/ωt ⇒ τ = (360 lb-in)/(2.7114 in³)

⇒ τ = 132.773 lb/in² = 132.773 psi

7 0
3 years ago
Whats the force of gravitation of a 10kg rock and 100kg boulder which are 5 meters apart​
spayn [35]

Answer:

F = 2.6692 x 10⁻⁹ N

Explanation:

Given,

The mass of the rock, m = 10 kg

The mass of the boulder, M = 100 kg

The distance between them, d = 5 m

The gravitational force between the two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. It is given by the formula

                                   <em> F = GMm/d²  newton</em>

Where,

                                 G - Universal gravitational constant

Substituting the given values,

                                 F = 6.673 x 10⁻¹¹ x 100 x 10 / 5²

                                 F = 2.6692 X 10⁻⁹ N

Hence, the force between the two bodies is, F = 2.6692 X 10⁻⁹ N

6 0
3 years ago
Other questions:
  • How do coal deposits found in the U.S. and Serbia help prove the theory of continental drift?
    5·1 answer
  • Explain how the gas laws apply to the act of breathing. Describe the changes that occur in each step of the process in terms of
    11·1 answer
  • 1. Distinguish between the relationship that
    12·1 answer
  • A person bends over to grab a 20 kg object. The back muscle responsible for supporting his upper body weight and the object is l
    13·1 answer
  • To practice Problem-Solving Strategy 22.1 for electric force problems. Two charged particles, with charges q1=qq1=q and q2=4qq2=
    11·1 answer
  • At a cost of 9.0 cents/kWh, estimate how much this would add to your monthly electric energy bill if you made toast four morning
    7·1 answer
  • A chef, wanting to create a device to better cover food in olive oil creates a sprayer that charges the oil positively before sp
    5·1 answer
  • As the broadcaster speakers the sound wave being produced by
    6·1 answer
  • If a liquid is heated and the temperature at which it boils is measured, the _____ property is being measured.
    7·2 answers
  • A sinusoidal wave of wavelength 2.00m and amplitude 0.100 m travels on a string with a speed of 1.00 m/s to the right. At t = 0
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!