1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
3 years ago
8

The rate at which energy is transferred

Physics
2 answers:
solniwko [45]3 years ago
6 0
Power is the rate at which energy is transferred.

Hope this helps.
Nitella [24]3 years ago
3 0
Search Results<span>If the potential difference is 12V and the current is 5A, the power is 12 x 5 = 60W. This means that 60J of energy is transferred per second.</span>
You might be interested in
Calculate the intensity of current flowing through a computer that consumes 180W and operates at 120 V.
padilas [110]

Answer:

C) 1.5 A

Explanation:

P = IV

180 W = I (120 V)

I = 1.5 A

5 0
3 years ago
Please please help me
Illusion [34]

Answer:

amitude doesnt change

Explanation:

6 0
3 years ago
Hello guys! Can u please help me with physics. I translated it in English. Can yall help me please how much u can!!
DedPeter [7]

1. Since the body is thrown vertically upward, the only force acting on it as it rises and falls is gravity, which causes a constant downward acceleration with magnitude g = 9.8 m/s². Because this acceleration is constant, we can use the formula

v² - u² = 2a ∆x

where

u = initial speed

v = final speed

a = acceleration

∆x = displacement

At its maximum height, some distance y above the point where the body is launched, the body has zero velocity, so

0² - (20 m/s)² = 2 (-9.8 m/s²) y

Solve for y :

y = (20 m/s)² / (2 (9.8 m/s²)) ≈ 20.4 m

2. Relative to the ground, the body's maximum height is 60 m + 20.4 m ≈ 80.4 m.

3. At any time t ≥ 0, the body's vertical velocity is given by

v = 20 m/s - gt

At the highest point, we have

0 = 20 m/s - (9.8 m/s²) t

and solving for t gives

t = (20 m/s) / (9.8 m/s²) ≈ 2.04 s

4. The body's height y above the ground at any time t ≥ 0 is given by

y = 60 m + (20 m/s) t - 1/2 gt²

Solve for t when y = 0 :

0 = 60 m + (20 m/s) t - 1/2 (9.8 m/s²) t²

Using the quadratic formula,

t = (-b + √(b² - 4ac)) / (2a)

(and omitting the negative root, which gives a negative solution) where a = -1/2 (9.8 m/s²), b = 20 m/s, and c = 60 m. You should end up with

t ≈ 6.09 s

5. At the time found in (4), the body's velocity is

v = 20 m/s - g (6.09 s) ≈ -39.7 m/s

Speed is the magnitude of velocity, so the speed in question is 39.7 m/s.

6 0
3 years ago
Write down at least 3 equations as you solve them
Step2247 [10]

Answer:

3+7=          7x3=                                21➗7=          

Explanation:

3+7= 10              7 8 9 10

7x3= 21                  7 14 21

21➗7=3        21 14 7

                 mark me brainliest                      please

4 0
1 year ago
A space station has a large ring-like component that rotates to simulategravity for the crew. This ring has a massM= 2.1×105kg a
ivann1987 [24]

Answer:

Each thruster has to applied a force of 294.5N in tangential direction

Explanation:

Mass of the ring ,M =2.1×105kg

Mass of the ship ,m = 3.5×104kg

Radius of the ring R = 86.0 m

distance of ship from center of the ring, r =31.0 m

Let force applied by each thruster be F

Time taken to reach  gravity ,t = 3hrs = 3600× 3 =10800sec

The movement of ring make the object kept at the edge feel a force of centrifuge in outward direction.

Centrifugal force = weight of the object on earth

Assume the ring is moving with angular speed ω

Centripetalforce of the object kept at ring

m₁R ω²=m₁g  (m₁=mas of object)

⇒Rω² = g

⇒ω = √g/R

The ring start from 0 angular speed with constant angular acceleration

Let the constant angular acceleration be ∝

∝ = ω  / t

(ω = √g/R)

∝ = \frac{1}{t } \sqrt{\frac{g}{R} } }

Consider Torque on the ring and ship system

T = FR + FR = 2FR

Moment of inertia of ring ship system

I = I(ring)+I(ship)+I(ship)

= MR² + mr² + mr² = MR² + 2mr²

angular acceleration of the ring ship system

∝ = \frac{2FR}{MR^2 + 2mr^2}

Now we have ,

∝ = \frac{1}{t} \sqrt{\frac{g}{R} }  , ∝ = \frac{2FR}{MR^2+2mr^2}

equating both values

We have,

F = \frac{MR^2+2mr^2}{2Rt} \sqrt{\frac{g}{R} }

where,

m = 2.1 × 10⁵kg, R = 86m, m = 3.5 × 10₄kg,

r = 31m, g = 9.8m/s² , t = 10800sec

F = \frac{(2.1 \times 10^5 \times86^2)+(2\times3.5v10^4\times31^2) }{2\times86\times10800} \times\sqrt{\frac{9.8}{86} } \\\\F = 294.47N\\\approx294.5N

Each thruster has to applied a force of 294.5N in tangential direction

3 0
3 years ago
Other questions:
  • Work &amp; Power Problems
    14·1 answer
  • Give an example of a reputable website
    14·2 answers
  • Which statement correctly describes the relationship between frequency and wavelength?
    13·2 answers
  • Write examples of adaptation in mangrove .? <br>what are the adaptation of rainforest.?​
    8·1 answer
  • Air expands adiabatically in a piston–cylinder assembly from an initial state where p1 = 100 lbf/in.2, v1 = 3.704 ft3/lb, and T1
    5·1 answer
  • A peach has a layer of skin, a thick section of fruit, and a pit in the center. Which of these would a peach be a good model for
    8·2 answers
  • A change that produces one or more new substances is called _____.
    7·2 answers
  • How much thermal energy is
    15·1 answer
  • A section of a parallel-plate air waveguide with a plate separation of 7.11 mm is constructed to be used at 15 GHz as an evanesc
    5·1 answer
  • F. If heat could flow to the container, how would the final temperature be affected?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!