Answer:
468 m
Explanation:
So the building and the point where the laser hit the water surface make a right triangle. Let's call this triangle ABC where A is at the base of the building, B is at the top of the building, and C is where the laser hits the water surface. Similarly, the submarine, the projected submarine on the surface and the point where the laser hit the surface makes a another right triangle CDE. Let D be the submarine and E is the other point.
The length CE is length AE - length AC = 284 - 234 = 50 m
We can calculate the angle ECD:


This is also the angle ACB, so we can find the length AB:



So the height of the building is 468m
The first one might be faunal succsession and the 2nd one might be metamorphic rock
Work done by the force = Force x displacement. Power = work done/time = F.s/t = F.u.t/t = F.u = 95 x 20 = 1900J. {S=ut because acceleration is zero since car is moving at constant velocity}.
As stated in the statement, we will apply energy conservation to solve this problem.
From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as


Where,
m = mass
= initial and final velocity
g = Gravity
h = height
As the mass is tHe same and the final height is zero we have that the expression is now:





