Answer:
C
Explanation:
The pattern is adding .5 to the cm every .1 in weight you just continue the table
Answer:
1.) 11 km/s
2.) 9.03 × 10^-5 metres
Explanation:
Given that an electron enters a region of uniform electric field with an initial velocity of 64 km/s in the same direction as the electric field, which has magnitude E = 48 N/C.
Electron q = 1.6×10^-19 C
Electron mass = 9.11×10^-31 Kg
(a) What is the speed of the electron 1.3 ns after entering this region?
E = F/q
F = Eq
Ma = Eq
M × V/t = Eq
Substitute all the parameters into the formula
9.11×10^-31 × V/1.3×10^-9 = 48 × 1.6×10^-19
V = 7.68×10^-18 /7.0×10^-22
V = 10971.43 m/s
V = 11 Km/s approximately
(b) How far does the electron travel during the 1.3 ns interval?
The initial velocity U = 64 km/s
S = ut + 1/2at^2
S = 64000×1.3×10^-6 + 1/2 × 8.4×10^12 × ( 1.3×10^-9)^2
S =8.32×10^-5 + 7.13×10^-6
S = 9.03 × 10^-5 metres
When hard stabilization structures such as groins are used to stabilize a shoreline, the change in the longshore current results <u>deposition of sediment. </u>
On the upcurrent side of the barrier, sediment is deposited as the longshore current slows.
What is Hard stabilization?
- Hard stabilization is the prevention of erosion through the use of artificial barriers.
- Other hard stabilization structures, such as breakwaters and seawalls, are built parallel to the beach to protect the coast from the force of waves.
- Hard stabilization structures, such as groins, are built at right angles to the shore to prevent the movement of sand down the coast and maintain the beach.
- These constructions are made to last for many years, but because they detract from the visual splendor of the beach, they are not always the ideal answer.
- Additionally, they affect the habitats and breeding sites of native shoreline species, interfering with the ecosystem's natural processes.
Learn more about the Hard stabilization with the help of the given link:
brainly.com/question/16022736
#SPJ4
An electrically charged element is called an "ion". A neutral element is an atom.
The answer is earth's crust