Answer:
The mean of the distribution of sample means is 27.6
Step-by-step explanation:
We are given the following in the question:
Mean, μ = 27.6
Standard Deviation, σ = 39.4
We are given that the population is a bell shaped distribution that is a normal distribution.
Sample size, n = 173.
We have to find the mean of the distribution of sample means.
Central Limit theorem:
- It states that the distribution of the sample means approximate the normal distribution as the sample size increases.
- The mean of all samples from the same population will be approximately equal to the mean of the population.
Thus, we can write:
Thus, the mean of the distribution of sample means is 27.6
Yes, that's quite true. It's also a real number, and a negative number.
Did you have a question to ask ?
Answer:
3 point in draw
Step-by-step explanation:
because the trinidad netballer draw and got 3 points
Answer:
The data item is
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean and standard deviation , the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 400 and a standard deviation of 60.
This means that
z=3
We have to find X when Z = 3. So
The data item is
<span>
28 11 points in 1 quarter because 44/4=11 which is 11/1</span>