We have that the the liquid is
- C_2H_5OH (ethanol
- And at a condition of H_2SO4 as catalyst and temp 170
From the question we are told
- A student wished to prepare <em>ethylene </em>gas by <em>dehydration </em>of ethanol at 140oC using sulfuric acid as the <em>dehydrating </em>agent.
- A low-boiling liquid was obtained instead of ethylene.
- What was the liquid, and how might the reaction conditions be changed to give ethylene
<h3>
Ethylene formation</h3>
Generally the equation is
2C_2H_5OH------CH3CH_2O-CH_2CH_3+H_20
Therefore
with ethanol at 140oC
The product is diethyl ethen
The reaction at 170 ethylene will give
C_2H_5OH-------CH_2=CH_2+H_2O( at a condition of H_2SO4 as catalyst and temp 170)
Therefore
The the liquid is
For more information on Ethylene visit
brainly.com/question/20117360
Answer
× 10²³ molecules are in 41.8 g of sulfuric acid
Explanation
The first step is to convert 41.8 g of sulfuric acid to moles by dividing the mass of sulfuric acid by its molar mass.
Molar mass of sulfuric acid, H₂SO₄ = 98.079 g/mol

Finally, convert the moles of sulfuric acid to molecules using Avogadro's number.
Conversion factor: 1 mole of any substance = 6.022 × 10²³ molecules.
Therefore, 0.426187053 moles of sulfuric acid is equal

Thus, 2.57 × 10²³ molecules are in 41.8 g of sulfuric acid.
Polar covalent bond- a bond where atoms are unevenly shared due to a larger difference in electronegativity of the bonded elements.
Non-polar covalent bond- These are bonds between elements with a low difference in electronegativity. Electrons are shared equally in these bonds between the elements.
Ionic bonds- have such large difference in electronegativity that they take/give electrons to the element they are bonded to. They do not share electrons at all. Bonds between a non-metal and a metal.
Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.