Answer: A substitution is a mutation that exchanges one base for another (i.e., a change in a single "chemical letter" such as switching an A to a G). Such a substitution could: change a codon to one that encodes a different amino acid and cause a small change in the protein produced.
Explanation: I know this is correct just trust me and please mark me as brainiest.
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
Answer:
You can boil or evaporate the water and the salt will be left behind as a solid. If you want to collect the water, you can use distillation. This works because salt has a much higher boiling point than water. One way to separate salt and water at home is to boil the salt water in a pot with a lid.
Explanation:
The correct answer would be A. The symbol Eo would represent the cell potential of an electrolytic cell. This potential is being created by two metals that possess different properties. The energy per charge that is available from the reaction of the metals is the measure of this potential and is related to the equilibrium constant, K.
<u>Answer:</u> The molarity of Iron (III) chloride is 0.622 M.
<u>Explanation:</u>
Molarity is defined as the number of moles present in one liter of solution. The equation used to calculate molarity of the solution is:

Or,

We are given:
Mass of iron (III) chloride = 1.01 g
Molar mass of iron (III) chloride = 162.2 g/mol
Volume of the solution = 10 mL
Putting values in above equation, we get:

Hence, the molarity of Iron (III) chloride is 0.622 M.