5/ sqrt (10)
no radicals in the denominator so we multiply by sqrt(10)/sqrt(10)
5/ sqrt (10)* sqrt(10)/sqrt(10)
5 * sqrt(10)
---------------
10
sqrt(10)
-----------
2
1/5x + 3 = 10
Subtract by 3 on both sides.
1/5x = 7.
Now to isolate the variable, flip the coefficient in front of the variable and multiply both sides by it.
5(1/5x) = 7(5)
x = 7(5)
x = 35
Now to check:
1/5(35) + 3 = 10
35/5 + 3 = 10
35/5 is 7.
7 + 3 = 10
10 = 10
Answer:
should be 0.28125
Step-by-step explanation:
Answer:
Segment BF = 16
Step-by-step explanation:
The given theorem states that a line parallel to one side of a triangle divides the other two sides proportionately
The given theorem is the Triangle Proportionality Theorem
According to the theorem, given that segment DE is parallel to segment BC, we have;
![\dfrac{AD}{BD} = \dfrac{AE}{EC}](https://tex.z-dn.net/?f=%5Cdfrac%7BAD%7D%7BBD%7D%20%3D%20%5Cdfrac%7BAE%7D%7BEC%7D)
Therefore;
![BD = \dfrac{AD}{\left(\dfrac{AE}{EC} \right) } = AD \times \dfrac{EC}{AE}](https://tex.z-dn.net/?f=BD%20%3D%20%5Cdfrac%7BAD%7D%7B%5Cleft%28%5Cdfrac%7BAE%7D%7BEC%7D%20%5Cright%29%20%7D%20%20%3D%20AD%20%5Ctimes%20%5Cdfrac%7BEC%7D%7BAE%7D)
Which gives;
![BD = 6 \times \dfrac{18}{12}= 9](https://tex.z-dn.net/?f=BD%20%3D%206%20%5Ctimes%20%5Cdfrac%7B18%7D%7B12%7D%3D%209)
Similarly, given that EF is parallel to AB, we get;
![\dfrac{AE}{EC} = \dfrac{BF}{FC}](https://tex.z-dn.net/?f=%5Cdfrac%7BAE%7D%7BEC%7D%20%3D%20%5Cdfrac%7BBF%7D%7BFC%7D)
Therefore;
![BF = FC \times \dfrac{AE}{EC}](https://tex.z-dn.net/?f=BF%20%3D%20FC%20%5Ctimes%20%5Cdfrac%7BAE%7D%7BEC%7D)
Which gives;
![BF = 24 \times \dfrac{12}{18} = 16](https://tex.z-dn.net/?f=BF%20%3D%2024%20%5Ctimes%20%5Cdfrac%7B12%7D%7B18%7D%20%3D%2016)
Therefore, the statement that can be proved using the given theorem is segment BF = 16.
Answer:
Sanchez- 42
Louis- 40
Step-by-step explanation:
hope this helps