1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis23 [38]
3 years ago
6

Look at picture! IM GIVING ALL THE POINTS!

Mathematics
1 answer:
stepan [7]3 years ago
5 0

Answer:

Are we supposed to fill in the blanks of the equation?

You might be interested in
How do you do 4 and 6? Can you guys tell me step by step? Thanks :)
Paraphin [41]
4.
a+5=-5a+5

Subtract 5 from both sides
a=-5a

Subtract a from both sides
0=-6a

Divide both sidesby -6
0=a

Final answer: a=0

6.
p-1=5p+3

Add 1 to both sides
p=5p+4

Subtract 5p from both sides
-4p=4

Divide both sides by -4
p=-1

Final answer: p=-1
8 0
4 years ago
interpret r(t) as the position of a moving object at time t. Find the curvature of the path and determine thetangential and norm
Igoryamba

Answer:

The curvature is \kappa=1

The tangential component of acceleration is a_{\boldsymbol{T}}=0

The normal component of acceleration is a_{\boldsymbol{N}}=1 (2)^2=4

Step-by-step explanation:

To find the curvature of the path we are going to use this formula:

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}

where

\boldsymbol{T}} is the unit tangent vector.

\frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| is the speed of the object

We need to find \boldsymbol{r}'(t), we know that \boldsymbol{r}(t)=cos \:2t \:\boldsymbol{i}+sin \:2t \:\boldsymbol{j}+ \:\boldsymbol{k} so

\boldsymbol{r}'(t)=\frac{d}{dt}\left(cos\left(2t\right)\right)\:\boldsymbol{i}+\frac{d}{dt}\left(sin\left(2t\right)\right)\:\boldsymbol{j}+\frac{d}{dt}\left(1)\right\:\boldsymbol{k}\\\boldsymbol{r}'(t)=-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}

Next , we find the magnitude of derivative of the position vector

|| \boldsymbol{r}'(t)}||=\sqrt{(-2\sin \left(2t\right))^2+(2\cos \left(2t\right))^2} \\|| \boldsymbol{r}'(t)}||=\sqrt{2^2\sin ^2\left(2t\right)+2^2\cos ^2\left(2t\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4\left(\sin ^2\left(2t\right)+\cos ^2\left(2t\right)\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4}\sqrt{\sin ^2\left(2t\right)+\cos ^2\left(2t\right)}\\\\\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1\\\\|| \boldsymbol{r}'(t)}||=2\sqrt{1}=2

The unit tangent vector is defined by

\boldsymbol{T}}=\frac{\boldsymbol{r}'(t)}{||\boldsymbol{r}'(t)||}

\boldsymbol{T}}=\frac{-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}}{2} =\sin \left(2t\right)+\cos \left(2t\right)

We need to find the derivative of unit tangent vector

\boldsymbol{T}'=\frac{d}{dt}(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j}) \\\boldsymbol{T}'=-2\cdot(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j})

And the magnitude of the derivative of unit tangent vector is

||\boldsymbol{T}'||=2\sqrt{\cos ^2\left(x\right)+\sin ^2\left(x\right)} =2

The curvature is

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}=\frac{2}{2} =1

The tangential component of acceleration is given by the formula

a_{\boldsymbol{T}}=\frac{d^2s}{dt^2}

We know that \frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| and ||\boldsymbol{r}'(t)}||=2

\frac{d}{dt}\left(2\right)\: = 0 so

a_{\boldsymbol{T}}=0

The normal component of acceleration is given by the formula

a_{\boldsymbol{N}}=\kappa (\frac{ds}{dt})^2

We know that \kappa=1 and \frac{ds}{dt}=2 so

a_{\boldsymbol{N}}=1 (2)^2=4

3 0
3 years ago
Express 1 1/2% as a decimal.
Step2247 [10]
If 1% is equal to 0.01
and 1/2% is equal to 0.005
then 1 1/2% is equal to 0.015
7 0
3 years ago
In an experiment, two numbers between 1 and 6 are chosen. the second number must be different than the first number. what is the
GREYUIT [131]
Pick a 3.  P1/6
Pick another not 3 but 5 or 6 is P2/5
1/6 x 2/5 1/15 = 0.0667
5 0
4 years ago
HURRY PLSS <br> Solve for x
Anton [14]

x=1 or x= 12

Step-by-step explanation:

x²-13x+12=0

x²-12x-x+12=0

x(x-12)-1(x-12)=0

(x-1)(x-12)=0

x-1=0 or x-12=0

x=1 or x=12

8 0
3 years ago
Other questions:
  • This table models a linear function. x −8 −4 4 8 y −3 0 6 9 Enter the coordinates of the y-intercept in the boxes.
    5·1 answer
  • What is the product? 8(–1)<br> a. –1.4<br> b. –8<br> c. 8<br> d. 11.2
    6·1 answer
  • To rent a certain meeting room, a college charges a reservation fee of $19 and an additional fee of $4 per hour. The chemistry c
    11·1 answer
  • The sum of a number times 7 and 24 is at least - 29.
    13·1 answer
  • Visa with no annual fee and 16.99% apr 1000
    7·1 answer
  • If CB is the midsegment, find x. <br> A. 7<br> B. 14<br> C. 15<br> D. 8
    8·2 answers
  • HELP PLEASE 13 POINTS
    11·1 answer
  • Factorize 1-(3x-1)^2​
    9·1 answer
  • Solve for m GHI if m GHJ = 59° and m JHI = 39º.
    14·1 answer
  • а Briefly explain how you would graph an equation such as y=7x-2, either on paper or using a graphing calculator​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!