Adenine can't go with it because adenine can only go with thymine so it prevents it so it can go the right way
Answer:
A gene is a section of a double-stranded molecule known as DNA. This molecule is found within the nucleus of the cell, contained in threadlike structures called chromatin. The two strands form a double helix linked by a series of paired bases. The base adenine is always linked to thymine and the base cytosine is always linked to guanine.
Answer:Increase in ambient global temperatures.
Recyling energy to be used again
Regulation of oxygen and carbon dioxide levels
An increase of erosion and siltation along waterways
Explanation:
Conservational biologists think about the preservation of ecosystem by maintaining the environment in a human control way.
Increase in ambient global temperatures.: The humans must prevent the increase in global temperature worldwide by preventing the rise of greenhouse gases which can lead to global warming worldwide.
Recyling energy to be used again: The sources of energy like wood, waste water can be recycled again for reutilization.
Regulation of oxygen and carbon dioxide levels.: The oxygen and carbon dioxide levels must be regulated. As oxygen is the basic requirement for respiration. The increase in carbon dioxide levels due to human activities is likely to cause respiratory diseases and health hazards in living beings.
An increase of erosion and siltation along waterways.: The erosion and siltation will likely to deposit nutrients and debris which may either contaminate the waterway or may cause eutrophication.
<span>The Golgi-Apparatus is the organelle that packages and distributes proteins that are received from the endoplasmic reticulum. It can be found in most eukaryotic cells, and was named after the Italian scientist Camillo Golgi who identified it in 1897. It is an important organelle whose function is also to process proteins for secretion, among other things. </span>
Answer:
Channel proteins and Carrier proteins
Explanation:
These are type of membrane proteins that transcend the entire length of phosphoslipid bi- layer in the plasma membrane.They facilitate the movement of ions and molecules across the walls of the plasma membranes.
Generally, substances like glucose, amino acids, are too large to pass through the phopholipid bilayers. Likewise ions of potassium, sodium calcium, because of their polarities can not pass through either. They are ferried across the phospholipid by group of protein structures called channel proteins. Some are also transported across by carrier proteins. The process by which these protein structures aided the diffusion of substances across the phospholipid bilayer is called Facilitated diffusion.
Channel proteins are pores, that are filled with water molecules with the entrance well gated. That is the entrance is controlled by part in the inner structure of the protein which can open or close the pores like a gate to control the movement of ions across it. e.g Sodium channels are gated for movement of sodium ions by voltage or ligands(chemicals) during nervous transmission to elicits action potential. Like wise Potassium channels allow diffusion of potassium ions across the phospholipid bilayers. it gates are shut when sodium channels are open; this regulate ion exchange.
Their structures are well fixed in shape , specific to the substance or ions being transported;and the rate of diffusion depends on the like hood of opening of the gate or closure.
Carrier molecules also in the membranes do not have a fixed shape, and their transport direction is determined by the direction of concentration gradients. Thus they can flip on either sides of the membranes to aid diffusion across. Their movement can be both passive and active, and the rates of diffusion depends on the number of available carrier proteins in the membrane. They are also specific to the ions they transport.And are not gated,
Therefore these two membrane integral proteins facilitate movements of substances across the phospholipild bilayers