Answer:
x = -16
5x = -80
1. divide 5 on both sides.
2. x = -16
Do not bring the 10 in first. 8x15 and 4x3.
Answer: 
Step-by-step explanation:
<h3>
The complete exercise is: "Line segment YV of rectangle YVWX measures 24 units. What is the length of line segment YX?"</h3><h3>
The missing figure is attached.</h3>
Since the figure is a rectangle, you know that:

Notice that the segment YV divides the rectangle into two equal Right triangles.
Knowing the above, you can use the following Trigonometric Identity:

You can identify that:

Therefore, in order to find the length of the segment YX, you must substitute values into
and then you must solve for YX.
You get that this is:

Answer:
IS NOT; ARE NOT
Step-by-step explanation:
Given: ![\[ \begin{bmatrix} \frac{1}{4} & \frac{1}{4}\\ \\-1 & \frac{-1}{2} \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%20%20%5Cbegin%7Bbmatrix%7D%20%20%20%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B1%7D%7B4%7D%5C%5C%20%20%20%20%5C%5C-1%20%26%20%5Cfrac%7B-1%7D%7B2%7D%20%5Cend%7Bbmatrix%7D%5C%5D)
and ![\[A = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\\\ -1 & \frac{-1}{2} \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5BA%20%3D%20%20%5Cbegin%7Bbmatrix%7D%20%20%20%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B1%7D%7B4%7D%20%5C%5C%5C%5C%20%20%20%20-1%20%26%20%5Cfrac%7B-1%7D%7B2%7D%20%20%5Cend%7Bbmatrix%7D%5C%5D)
We say two matrices
and
are inverses of each other when
where
is the identity matrix.
![\[I = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5BI%20%3D%20%20%5Cbegin%7Bbmatrix%7D%20%20%20%201%20%26%200%5C%5C%20%20%20%200%20%26%201%20%20%5Cend%7Bbmatrix%7D%5C%5D)
So, for
and
to be inverses of each other, we should have
.
Let us calculate
.
![\[\begin{bmatrix} -2 & -1 \\ 8 & 2 \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bbmatrix%7D%20-2%20%26%20-1%20%5C%5C%208%20%26%202%20%5Cend%7Bbmatrix%7D%5C%5D)
![\[\begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\\\ -1 & \frac{-1}{2}\end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B1%7D%7B4%7D%20%5C%5C%5C%5C%20-1%20%26%20%5Cfrac%7B-1%7D%7B2%7D%5Cend%7Bbmatrix%7D%5C%5D)
![\[\begin{bmatrix}\frac{1}{2} & 0 \\0 & 0 \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bbmatrix%7D%5Cfrac%7B1%7D%7B2%7D%20%26%200%20%5C%5C0%20%26%200%20%5Cend%7Bbmatrix%7D%5C%5D)
This is clearly not equal to the identity matrix. So we conclude that the matrices are not inverses of each other.