Without the ability to measure, it would be difficult for scientists to conduct experiments or form theories. Not only is measurement important in science and the chemical industry, it is also essential in farming, engineering, construction, manufacturing, commerce, and numerous other occupations and activities.
Since the ladder is standing, we know that the coefficient
of friction is at least something. This [gotta be at least this] friction
coefficient can be calculated. As the man begins to climb the ladder, the
friction can even be less than the free-standing friction coefficient. However,
as the man climbs the ladder, more and more friction is required. Since he
eventually slips, we know that friction is less than what's required at the top
of the ladder.
The only "answer" to this problem is putting lower
and upper bounds on the coefficient. For the lower one, find how much friction
the ladder needs to stand by itself. For the most that friction could be, find
what friction is when the man reaches the top of the ladder.
Ff = uN1
Fx = 0 = Ff + N2
Fy = 0 = N1 – 400 – 864
N1 = 1264 N
Torque balance
T = 0 = N2(12)sin(60) – 400(6)cos(60) – 864(7.8)cos(60)
N2 = 439 N
Ff = 439= u N1
U = 440 / 1264 = 0.3481
The old style (incandescent) light bulb converts more energy
into heat than it does into light. If you're using it mainly as a
source of light, then it's a bummer, and its efficiency is very low.
BUT ... if you're using an incandescent light bulb as a heater, then
its efficiency is much better. It all depends on your point of view.
Answer:
A) Em = 4.41 J
B) L = 0.33m
Explanation:
A) The total mechanical energy of the block is the elastic potential energy due to the compressed spring. The gravitational energy is zero. Then you have:

k: constant's spring = 730 N/m
Δx: distance of the compression = 0.11m
You replace the values of k and Δx:

B) To find the distance L traveled by the block you take into account that the total mechanical energy of the block is countered by the work done by the friction force, and also by the work done by the gravitational energy.
Then, you have:

μ: coefficient of kinetic friction = 0.19
g: gravitational acceleration = 9.8m/s^2
M: mass of the block = 2.5kg
θ: angle of the inclined plane = 21°
You replace the values of all parameters:

hence, the distance L in which the block stops is 0.33m
Answer:

Explanation:
From the question we are told that:
Mass of fish 
Cross-sectional area 
Drag coefficient of 
Seawater density 
Speed of Fish
Generally the equation for Drag force F_d is mathematically given by

Generally the equation for high speed Power
is mathematically given by


