3 kilograms is equivalent to 29.41995008592, round according to what your teacher desires. Hope this helps you and have a wonderful night :)
<span>The key equation is going to come from Mr Planck: E=h \nu
Where h is Plancks constant; and ν is the frequency. This equation gives you the energy per photon at a given frequency. Alas, you're given wavelength, but that's easy enough to convert to frequency given the following equation:
c= lambda / nu
where c is the speed of light; λ (lambda) is the wavelength; and ν is again frequency. As soon as you know the energy of a photon with a wavelength of 550nm, you should know how many photons you would require to accumulate 10^-18J. Be careful with your units.</span>
Answer:
C) 24.4°
Explanation:
let nd = 2.419 be the index of refraction of diamond and na = 1.0 be the index of refraction of air and ∅c be the critical angle.
according to Snell's Law:
sin(∅c) = na/nd
sin(∅c) = (1.0)/(2.419)
∅c = 24.4°
We are given a mercury atom in the ground state which absorbs 20 eV of energy. It is then ionized by losing an electron. We need to calculate the kinetic energy that the electron has after ionization.
The initial energy is 20 eV = 20 J/C
The electron charge is = 1.60217662 × 10-19<span> coulombs
To determine the kinetic energy, we can use this equation:
KE = 20 Joules / Coulombs * </span>1.60217662 × 10-19<span> coulombs
KE = 1.25x10^20 Joules
Therefore, the amount of kinetic energy that the electron has after ionization is </span>1.25x10^20 Joules or 1.25x10^17 kJ. <span />
Answer:
The Stanford Linear Accelerator Center (SLAC) is a nationwide basic laboratory dedicated to empirical and theoretical work in elementary particle physics
Explanation:
Stanford Linear Accelerator Center which termed as SLAC is a nationwide basic laboratory dedicated to empirical and theoretical work in particle physics, the introduction of new strategies in strong-energy propulsion systems and in elementary particle sensors, and a comprehensive research program by initializing synchrotron radiation