Answer:
I Would go with Kye.
Explanation:
Why i would go with her is because she has more life experience with you. She also knows you better. I would usually go with the closest one and the one who knows you the best.
Hope this helps.
<3 Have a good day!
Answer: 24.97 kg
Explanation:
The gravitational force between two objects of masses M1, and M2 respectively, and separated by a distance R, is:
F = G*(M1*M2)/R^2
Where G is the gravitational constant:
G = 6.67*10^-11 m^3/(kg*s^2)
In this case, we know that
R = 0.002m
F = 0.0104 N
and that M1 = M2 = M
And we want to find the value of M, then we can replace those values in the equation to get
0.0104 N = (6.67*10^-11 m^3/(kg*s^2))*(M*M)/(0.002m)^2
(0.0104 N)*(0.002m)^2/(6.67*10^-11 m^3/(kg*s^2)) = M^2
623.69 kg^2 = M^2
√(623.69 kg^2) = M = 24.97 kg
This means that the mass of each object is 24.97 kg
Answer:
11760 joules
Explanation:
Given
Mass (m) = 75kg
Height (h) = 16m
Required
Determine the increment in potential energy (PE)
This is calculated as thus:
PE = mgh
Where g = 9.8m/s²
Substitute values for m, g and h.
P.E = 75 * 9.8 * 16
P.E = 11760 joules
Explanation: Newton's first law of motion states that a body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force. This is also known as the law of inertia. Inertia is the tendency of an object to remain at rest or remain in motion.
Answer:
t = 13.7 s or t = 14 s with proper significant figures
Explanation:
The initial speed is 0 m/s since the car starts from rest, acceleration is 5.5 m/s2 and distance is 523 m.
Since we have initial speed, acceleration and distance we can use the following formula to find the time. We can now use algebra to work out our answer.
d = vt +
at²
523 = (0)t + (
)(5.5)t²
523 = 2.8t²
186.8 = t²
13.7 s = t
(t = 14 s with proper significant figures)