Add 3x and 14. =17x hope this helps
54, 36, 24 are the 1st 3 element of a geometric progression with 2/3 as a common ratio: PROOF:
the 1st term is 54, (a₁= 54) the 2nd term a₂ = 24, then
(a₂ = a₁.r) or 36 = 54.r → r= 36/54 = 2/3. Same logique for the 3rd term.
So 2/3 is common ratio. We know that :U(n) = a.(r)ⁿ⁻¹. Then if a =54 and r = x (given by the problem), then f(x) = 54.xⁿ⁻¹
n, being the rank of any element of this geometric progression
Answer:
Step-by-step explanation:
Given is a triangle RST and another triangle R'S'T' tranformed from RST
Vertices of RST are (0, 0), (negative 2, 3), (negative 3, 1).
Vertices of R'S'T' are (2, 0), (0, negative 3), (negative 1, negative 1).
Comparing the corresponding vertices we find that x coordinate increased by 2 while y coordinate got the different sign.
This indicates that there is both reflection and transformation horizontally to the right by 2 units
So first shifted right by 2 units so that vertices became
(2,0) (0,3) (-1,1)
Now reflected on the line y=0 i.e. x axis
New vertices are
(2,0) (0,-3) (-1,-1)
Answer: .0142%
Step-by-step explanation: