In order of problems/numbers - 4, 3, 5, 6, 1, 2
Answer:
If y(x-y)^2=x, then int1/(x-3y)dx is equal to (A) 1/3log{(x-y)^2+1} (B) 1/4log{(x-y)^2-1} (C) 1/2log{(x-y)^2-1} (D) 1/6 log{(x^2-y^2-1}
Step-by-step explanation:
Reorder the terms
112 + 3x = 100 + 5x
112 + 3x + (-5x) = 100 + 5x + (-5x)
Combine the like terms
5x + (-5x) = 0
112 + (-2x) = 100 + 0
112 + (-2x) = 100
112 + (-112) + (-2x) = 100 + (-112)
Combine like terms again
112 + (-112) =0
0 + (-2x) = 100 + (-112)
100 + (-112) = (-112) = (-12)
-2x = -12
-12 / -2 = 6
x = 6 <span>✓</span>
Check your work
3 * 6 + 112 = 130
5 * 6 + 110 = 130
130 = 130 ✓
Answer: A
2x^2+2x-8 is the quotient when x+3 divides P(x)
=> P(x) = (2x² + 2x -8)(x + 3) = 2(x² + x - 4)(x + 3) = (x² + x - 4) (2x + 6)
=> the quotient when 2x+6 divides p(x) is x² + x - 4
Step-by-step explanation:
X^2-6x=13
(x-3)^2-9=13
(x-3)^2=22
(x-3)= +-sqrt22
x = sqrt22+3 or x = -sqrt22+3