Answer:
d
Explanation:
the dendrites is a part of the neuron receives messages from other neurons. Dendrites extend out from the cell body and receive messages from other nerve cells
Answer:
C)You should use the thin cooking twine.
Explanation:
A)You can choose either because they are the same length and will produce the same wave speed.
B)You should use the heavy rope.
C)You should use the thin cooking twine.
The speed of wave in a string is given by the following formula:
|
| = 
Where |
| = speed of wave,
= tension in the string, and μ = mass per length of the string.
<em>Even though the two strings have the same length, the μ (mass/length) for the heavy rope will be more than the that of a thin rope. Consequently, the </em>
<em>:μ for the thin rope will be higher than that of the heavy rope and as such, gives a bigger |</em>
<em>|. </em>
Therefore, the thin rope should be used in order to get a faster wave speed in the telephone.
The correct option is C.
☁️ Answer ☁️
The main disadvantage of convex mirrors is that they show a distorted picture of what is behind you. Distances are seen not as they are in reality and things appear closer than they really are. They are showing cars approximately twice as far away as they actually are.
Hope it helps.
Have a nice day hyung!~  ̄▽ ̄❤️
Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components


The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components


So we have enough information to solve for the components of the acceleration vector,
and
:


The acceleration vector then has direction
where

<span>1/3
The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r"
The equation for kinetic energy is
E = 1/2MV^2.
So the energy for the system prior to collision is
0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5
The energy after the collision is
0.5rv^2
Setting the two equations equal to each other
0.5r + 0.5 = 0.5rv^2
r + 1 = rv^2
(r + 1)/r = v^2
sqrt((r + 1)/r) = v
The momentum prior to collision is
-1r + 1
Momentum after collision is
rv
Setting the equations equal to each other
rv = -1r + 1
rv +1r = 1
r(v+1) = 1
Now we have 2 equations with 2 unknowns.
sqrt((r + 1)/r) = v
r(v+1) = 1
Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r.
r(sqrt((r + 1)/r)+1) = 1
r*sqrt((r + 1)/r) + r = 1
r*sqrt(1+1/r) + r = 1
r*sqrt(1+1/r) = 1 - r
r^2*(1+1/r) = 1 - 2r + r^2
r^2 + r = 1 - 2r + r^2
r = 1 - 2r
3r = 1
r = 1/3
So the less massive particle is 1/3 the mass of the more massive particle.</span>