Answer:
D.
Explanation:
To solve the problem it is necessary to apply the concepts of Destructive and constructive interference. The constructive interference in tin film is given by

Where,
t = thickness
Wavelenght
m= is an integer
n= film/refractive index
We use this equaton because phase change is only present for gasoline air interface, but not at the gasoline-water interface. <em>The minimum t only would be when the value of m=0 then</em>



Therefore the correct answer is D. The minimum thickness of the film to see ab right reflection is 100nm
Answer :
C) Atom
Actual answer should be element but depends on the way you interpret the question and the options given to answer it
Explanation :
Atom is the most basic unit of any substance and is what molecules are made of.
Hope it helps if it does let me know by thanking
The Hennessey Venom GT<span> is the fastest road car in the world.
</span>The fastest land animal<span> is the </span>Cheetah
Usain Bolt, the World's fastest<span> man.
</span>The Lockheed SR-71<span> "</span>Blackbird<span>" the fastest airplane.</span>
<span>
</span>
A) lithium and beryllium
Explanation:
From the given row on the periodic table, only lithium and beryllium will conduct electricity.
What makes a substance able to conduct electricity?
- The presence of free mobile electrons and in some, ions allows them to carry electric currents.
Metals are generally known to be good conductors of heat and electricity. This is because, metals have a large pool of electrons i.e free mobile electrons. They are electropositive with a large size and readily release their electrons for conduction.
Lithium and Beryllium are in the metallic block on the periodic table.
Learn more:
Metals brainly.com/question/2474874
#learnwithBrainly
Answer:
The frequency of the phonograph record is 0.2 Hz
Explanation:
The frequency of an object moving in uniform circular motion is the number of completed cycles the object makes in a specified time period
The given parameters of the phonograph record are;
The radius of the record = 0.15 m
The number of times the phonograph record rotates, n = 18 times
The time it takes the phonograph record to rotate the 18 times, t = 90 seconds
The frequency of the phonograph record, f = (The number of times the phonograph record rotates) ÷ (The time it takes the phonograph record to rotate the 18 times)
∴ The frequency of the phonograph record, f = n/t = 18/(90 s) = 0.2 Hz
The frequency of the phonograph record = 0.2 Hz.