Answer:
t1 = t2 + 3.02 V = 41.5
V t1 - 1/2 g t1^2 = V t2 - 1/2 g t2^2
Both stones reach the same height after the specified times
V (t1 - t2) = g/2 (t1^2 - t2^2) = g/2 (t1 - t2) (t1 + t2)
2 V / g = t1 + t2 = 2t1 + 3.02
t1 = V / g - 1.51 = 41.5 / 9.8 -1.51 = 2.72 s
t2 = t1 + 3.02 = 5.74 sec
Check:
41.5 * 2.72 - 4.9 * 2.72^2 = 76.6 m
41.5 * 5.74 - 4.9 * 5.74^2 = 76.8 m
Speed of second stone = 41.5 - 9.8 * 2.72 = 14.8 m/s
Answer:
The force is 
Explanation:
From the question we are told that
The length of the box is 
The width of the box is 
The height is 
The pressure experience on one of the sides is mathematically represented as
Where A is the area of the box which is mathematically evaluated as

substituting values


This pressure is equivalent to the atmospheric pressure which has a constant value of 
This implies that

=> 
=> 
When the dust is too thick to penetrate with visible light, such as the Nebula, Radio Waves are used to penetrate the dust. Longer radio waves can completely penetrate the thick cloud cover, allowing scientists to beam radar waves.
Answer:
The answer is C.
Explanation:
I guessed and it was right