1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
15

A node is a point on a standing wave that has no displacement from the rest position. at the nodes, _____.

Physics
2 answers:
xeze [42]3 years ago
8 0

Answer:

There is complete destructive interference between the incoming and reflected waves

Explanation:

I did Gradpoint :)

nikdorinn [45]3 years ago
4 0
<span>Nodes are points along the medium that appear to be standing still. They are points on a standing wave that has no displacement from the rest position.
Antinodes are the opposite of nodes. Those are</span> points that undergo the maximum displacement.
<span>At the nodes the destructive interference occurs</span> . For example <span>a crest of one wave meets a trough of a second wave</span> , or a half-crest of one wave meets a half-trough of a second wave...
You might be interested in
Why must the Moon travel more than a full orbit around the Earth for the full moon to be complete?
kumpel [21]

Answer:

The difference between the sidereal and synodic months occurs becuase as our moon moves around the earth, the earth also moves around our sun. Our moon must travel a little farther in its path to make up for the added distance and complete the phase cycle.

Explanation:

Hope this helps.

3 0
2 years ago
MamaMia's Pizza purchases its pizza delivery boxes from a printing supplier. MamaMia's delivers on-average 200 pizzas each month
Ira Lisetskai [31]

Answer:

a) 138 units

b) 17 units

c) 17 units

d) Total Cost = $353.35

Explanation:

Given:

Average pizzas delivered = 200

Charge of inventory holding = 30% of cost

Lead time = 7 days

Now,

a) Economic Order Quantity =  \sqrt\frac{2\times\textup{Annual Demand}\times\textup{Cost per Order}}{\textup{Carrying cost}}

also,

Annual Demand = 200 × 12 = 2400

Cost per Order = Cost of Box + Processing Costs

= 30 cents + $10

= $10.30

and, Carrying Cost = \frac{\textup{Total Inventory Cost}}{\textup{total annual demand}}

=\frac{\textup{Total Cost per order}\times\textup{Annual demand}\times\frac{25}{100}}{\textup{Annual demand}}

= \frac{\$10.30\times2400}\times\frac{25}{100}}{2400}

= $2.575

Therefore,

Economic Order Quantity =  \sqrt\frac{2\times\textup{2400}\times\textup{10.30}}{\textup{2.575}}

= 138.56 ≈ 138 units

b) Reorder Point

= (average daily unit sales × the lead time in days) + safety stock

= (\frac{200}{30}\times7

= 46.67 ≈ 47 units

c) Number of orders per year = \frac{\textup{Annual Demand}}{\textup{Economic order quantity}}

= \frac{\textup{2400}}{\textup{138}}

= 17.39 ≈ 17 units

d) Total Annual Cost (Total Inventory Cost)

= Ordering Cost + Holding Cost

Now,

The ordering Cost = Cost per Order × Total Number of orders per year

= $10.30 × 17

= $175.1

and,

Holding Cost = Average Inventory Held × Carrying Cost per unit

Average Inventory Held = \frac{\textup{0+138}}{\textup{2}} =  69

Carrying Cost per unit = $2.575

Holding Cost = 69 × $2.575 =  

$177.675

Therefore,

Total Cost = Ordering Cost + carrying cost

= $175.1  + $177.675 = $353.35

5 0
3 years ago
Read 2 more answers
While Bob is demonstrating the gravitational force on falling objects to his class, he drops an 1.0 lb bag of feathers from the
BartSMP [9]

In the experiment of free fall bob released a bag of mass 1 lb

so here we can say that initial speed of the bag is Zero

time taken by the bag to free fall is given as

t = 1.5 s

also the acceleration of free fall is given as

a = 9.8 m/s^2

now we will use kinematics equation here for finding the distance of free fall

d = v_i * t + \frac{1}{2} at^2

d = 0 + \frac{1}{2}*9.8* 1.5^2

d = 4.9 * 2.25

d = 11.025 m

so the bag will fall down by total distance of 11.025 m from its initial released position.


3 0
3 years ago
How does water get up to the atmosphere, and how does it get back down to earth surface
IrinaK [193]

Answer:

Water gets up to the Earth's atmosphere by evaporating from a body of water, which is then they become water vapor. It returns back to the surface by returning back to its water state and falling back down (as rain). The water vapor turns into clouds (clouds are really just water droplets), and when it cannot hold anymore waters, it disperses all the water (by raining).

6 0
2 years ago
An object in motion will have a speed which is a scaler , or ( blank ) which is a vector .
mylen [45]

Answer:

Velocity

Explanation:

Objects in motion usually have a speed which is scalar or velocity which is a vector.

A scalar quantity is one with magnitude but has no directional attribute.

A vector quantity is one with both magnitude and directional attribute.

Speed is a scalar quantity that describes the magnitude of motion a body accrues.

Velocity is a vector quantity that describes both the magnitude of motion and the direction of motion in a body.

3 0
3 years ago
Other questions:
  • What will happen when the north pole of a magnet is placed against the south pole of another magnet?
    11·1 answer
  • Our Sun is considered a(n) _____ star.
    12·1 answer
  • Question 4,5,and 6<br> Plz
    7·1 answer
  • Horizontal circular motion questions:
    8·1 answer
  • What is the equivalent volume occupied by three milliliters of water?
    7·2 answers
  • Which number is right
    8·1 answer
  • Time period of a simple pendulum if it makes 40 oscillations in 20 seconds.
    14·1 answer
  • What is velocity Write its formula
    15·2 answers
  • Describe what happens to the speed of a bicycle as it goes<br> uphill and downhill.
    9·1 answer
  • How to calculate the mass of a body whose weight is 200 N​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!