Answer:
28.5 m/s
18.22 m/s
Explanation:
h = 20 m, R = 20 m, theta = 53 degree
Let the speed of throwing is u and the speed with which it strikes the ground is v.
Horizontal distance, R = horizontal velocity x time
Let t be the time taken
20 = u Cos 53 x t
u t = 20/0.6 = 33.33 ..... (1)
Now use second equation of motion in vertical direction
h = u Sin 53 t - 1/2 g t^2
20 = 33.33 x 0.8 - 4.9 t^2 (ut = 33.33 from equation 1)
t = 1.17 s
Put in equation (1)
u = 33.33 / 1.17 = 28.5 m/s
Let v be the velocity just before striking the ground
vx = u Cos 53 = 28.5 x 0.6 = 17.15 m/s
vy = uSin 53 - 9.8 x 1.17
vy = 28.5 x 0.8 - 16.66
vy = 6.14 m/s
v^2 = vx^2 + vy^2 = 17.15^2 + 6.14^2
v = 18.22 m/s
= 454.55 g/cm3
I'm not too sure since the graduated cylinder was missing and I really don't know how to do it then. But give this a shot. Are you sure it wasn't a graduated cylinder, because I have no idea what that means
Answer:
No
Explanation:
No because like my other answer if we put to many diesels on it it will crack and little by little it will break eventually everyone will come tumbling into the water making them drown because they can't get the buckles loose or they wanted to save their families lives
Answer:
a) For y = 102 mA, R = 98.039 ohms
For y = 97 mA, R = 103.09 ohms
b) Check explanatios for b
Explanation:
Applied voltage, V = 10 V
For the first measurement, current ![y_{1} = 102 mA = 0.102 A](https://tex.z-dn.net/?f=y_%7B1%7D%20%3D%20102%20mA%20%3D%200.102%20A)
According to ohm's law, V = IR
R = V/I
Here, ![I = y_{1}](https://tex.z-dn.net/?f=I%20%3D%20y_%7B1%7D)
![R = \frac{V}{y_{1} } \\R = \frac{10}{0.102} \\R = 98.039 ohms](https://tex.z-dn.net/?f=R%20%3D%20%5Cfrac%7BV%7D%7By_%7B1%7D%20%7D%20%5C%5CR%20%3D%20%5Cfrac%7B10%7D%7B0.102%7D%20%5C%5CR%20%3D%2098.039%20ohms)
For the second measurement, current ![y_{2} = 97 mA = 0.097 A](https://tex.z-dn.net/?f=y_%7B2%7D%20%3D%2097%20mA%20%3D%200.097%20A)
![R = \frac{V}{y_{2} }](https://tex.z-dn.net/?f=R%20%3D%20%5Cfrac%7BV%7D%7By_%7B2%7D%20%7D)
![R = \frac{10}{0.097} \\R = 103 .09 ohms](https://tex.z-dn.net/?f=R%20%3D%20%5Cfrac%7B10%7D%7B0.097%7D%20%5C%5CR%20%3D%20103%20.09%20ohms)
b) ![y = \left[\begin{array}{ccc}y_{1} &y_{2} \end{array}\right] ^{T}](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dy_%7B1%7D%20%26y_%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D%20%5E%7BT%7D)
![y = \left[\begin{array}{ccc}y_{1} \\y_{2} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dy_%7B1%7D%20%5C%5Cy_%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D)
![y = \left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-3%7D%20%5C%5C97%2A10%5E%7B-3%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
A linear equation is of the form y = Gx
The nominal value of the resistance = 100 ohms
![x = \left[\begin{array}{ccc}100\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D100%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right] = \left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] \left[\begin{array}{ccc}100\end{array}\right]\\\left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] = \left[\begin{array}{ccc}102*10^{-5} \\97*10^{-5} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-3%7D%20%5C%5C97%2A10%5E%7B-3%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DG_%7B1%7D%20%5C%5CG_%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D100%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DG_%7B1%7D%20%5C%5CG_%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-5%7D%20%5C%5C97%2A10%5E%7B-5%7D%20%20%5Cend%7Barray%7D%5Cright%5D)