Answer: µ=0.205
Explanation:
The horizontal forces acting on the ladder are the friction(f) at the floor and the normal force (Fw) at the wall. For horizontal equilibrium,
f=Fw
The sum of the moments about the base of the ladder Is 0
ΣM = 0 = Fw*L*sin74.3º - (25.8kg*(L/2) + 67.08kg*0.82L)*cos74.3º*9.8m/s²
Note that it doesn't matter WHAT the length of the ladder is -- it cancels.
Solve this for Fw.
0= 0.9637FwL - (67.91L)2.652
Fw=180.1/0.9637
Fw=186.87N
f=186.81N
Since Fw=f
We know Fw, so we know f.
But f = µ*Fn
where Fn is the normal force at the floor --
Fn = (25.8 + 67.08)kg * 9.8m/s² =
910.22N
so
µ = f / Fn
186.81/910.22
µ= 0.205
Answer:
Oceanic crust and continental crust
Explanation:
A subduction zone is normally between oceanic crust which is made of basalt and continental crust which is made of granite. Oceanic crust is denser than continental crust. So when oceanic crust collides with continental crusts, it subsducts underneath the continental crust since it is denser.
Explanation:
Though the diagram that is mentioned in the questions is not given. I have given general information related to the Earth's magnetic axis with respect to geographic/rotational axis.
Axis is an imaginary line around which a body rotates. The rotational axis of the Earth enters into and exits from the Earth at two points namely: North and South pole.
We know that the Earth behaves like a huge bar magnet so just like the bar magnet it must also have magnetic axis and poles. Earth has north magnetic pole and south magnetic pole. It has a strong magnetic field as well known as magnetosphere.
The interesting point about magnetic axis is that it is not same as rotational axis. In fact it makes an angle with the rotational axis. This is known as magnetic inclination. This inclination varies at different points on Earth.
Another interesting point is that the geographic and magnetic poles are opposite. That means near the geographic north pole we have the magnetic south pole and vice versa.
Answer:
The inlet velocity is 21.9 m/s.
The mass flow rate at reach exit is 1.7 kg/s.
Explanation:
Given that,
Mass flow rate = 2 kg/s
Diameter of inlet pipe = 5.2 cm
Fifteen percent of the flow leaves through location (2) and the remainder leaves at (3)
The mass flow rate is

We need to calculate the mass flow rate at reach exit
Using formula of mass



We need to calculate the inlet velocity
Using formula of velocity

Put the value into the formula


Hence, The inlet velocity is 21.9 m/s.
The mass flow rate at reach exit is 1.7 kg/s.