When using the right-hand rule to determine the direction of the magnetic force on a charge, which part of the hand points in the direction that the charge is moving? The answer is <span>thumb.
</span>One way to remember this is that there is one velocity, represented accordingly by the thumb. There are many field lines, represented accordingly by the fingers. The force is in the direction you would push with your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge. Because the force is always perpendicular to the velocity vector, a pure magnetic field will not accelerate a charged particle in a single direction, however will produce circular or helical motion (a concept explored in more detail in future sections). It is important to note that magnetic field will not exert a force on a static electric charge. These two observations are in keeping with the rule that <span>magnetic fields do no </span>work<span>.</span>
Explanation
(m) is measured in kilograms (kg)
<h2>(F) is measured in newtons (N)</h2>
<h3>acceleration (a) is measured in metres per second squared (m/s²)</h3>
d. the rate at which work is accomplished
Answer:
V(average)=6.37 V
Explanation:
Given Data
Peak Voltage=10V
Frequency=10 kHZ
To Find
Average Voltage
Solution
For this first we need to find Voltage peak to peak
So
Voltage (peak to peak)= 2× voltage peak
Voltage (peak to peak)= 2×10
Voltage (peak to peak)= 20 V
Now from Voltage (peak to peak) formula we can find the Average Voltage
So
Voltage (peak to peak)=π×V(average)
V(average)=Voltage (peak to peak)/π
V(average)=20/3.14
V(average)=6.37 V
Answer:
525 kg.m/s
Explanation:
★ Momentum = Mass× Velocity
→ P = (7.5 × 70) kg.m/s
→ P = (75 × 7) kg.m/s
→ <u>P</u><u> </u><u>=</u><u> </u><u>5</u><u>2</u><u>5</u><u> </u><u>kg</u><u>.</u><u>m</u><u>/</u><u>s</u>