Answer:
E = 2k
Explanation:
Gauss's law states that the electric flux equals the wax charge between the dielectric permeability.
We must define a Gaussian surface that takes advantage of the symmetry of the problem, let's use a cylinder with the faces perpendicular to the line of charge. Therefore the angle between the cylinder side area has the same direction of the electric field which is radial.
Ф = ∫ E . dA = E ∫ dA = q_{int} /ε₀
tells us that the linear charge density is
λ = q_ {int} /l
q_ {int} = l λ
we substitute
E A = l λ /ε₀
is area of cylinder is
A = 2π r l
we substitute
E =
E =
the amount
k = 1 / 4πε₀
E = 2k
<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>
Answer:
The minimum total speed is 11.2km/s
Explanation:
We are been asked to find the escape velocity.
Escape velocity is defined as the minimum initial velocity that will take a body(projectile)away above the surface of a planet(earth) when it's projected vertically upwards.
The formula to calculate the escape velocity is Ve = √2gR
For the earth g = 9.8m/s2 , R = 6.4*10^6
Substituting into the equation Ve = √2*9.8*6.4*10^6 = 11.2*10^3m/s
=11.2km/s
им putins брат, почему вы обманываете нашу систему образования, Это теперь запрещено в России.