Given:
The distance between the two buildings on a map = 14 cm
The scale is 1:35000.
To find:
The actual distance in km.
Solution:
The scale is 1:35000.
It means 1 cm on map = 35000 cm in actual.
Using this conversion, we get
14 cm on map = cm in actual.
= cm in actual.
= cm in actual.
= km in actual.
Therefore, the actual distance between two buildings is 4.9 km.
Answer:
<h2> 105 tickets</h2>
Step-by-step explanation:
To solve this problem we need to model an equation to represent the situation first.
the goal is to archive $7500 in the even, bearing in mind that there is a cost of $375 fee for rent, we need to put this amount into consideration
let the number of tickets be x
so
75x-375>=7500--------1
Equation 1 above is a good model for the equation
we can now solve for x to determine the number of tickets to be sold to archive the aim
75x-375>=7500--------1
75x>=7500+375
75x>=7875
divide both sides by 75 we have
x>=7875/75
x>=105 tickets
so they must sell a total of 105 tickets and above to meet the target of $7500 with the rent inclusive
Answer:
1.x^2
2.x+8
3.x
4. 8x
Step-by-step explanation:
Length of old is x inches.
Because it is square we have that area of the old canvas :
When we read : width of new is increased by 8 so : x+8
Length is x.
The difference of areas:
Old canvas : A1=
New canvas :
Now we can find A2-A1:
A group of friends wants to go to the amusement park. They have no more than $320 to spend on parking and admission. Parking is $9.25, and tickets cost $28.25 per person, including tax. Write and solve an inequality which can be used to determine p, the number of people who can go to the amusement park.
___________________________________________
Please, give me some minutes to take over your question
________________________
They have no more than $320 to spend on parking and admission
320 ≥ 9.25 + 28.25*p
9.25 + 28.25*p ≤ 320
320- 9.25 ≥ 28.25*p
310.75/28.25 ≥ p
p ≤ 11
__________________________
Answer
The number of people who can go to the amusement park can be a maximum of 11 people (less than or equal to 11).
Answer:
2.83
Step-by-step explanation:
using the pythagorean theorem, ≈