Answer:
E. 0
Step-by-step explanation:
There isn't any guarantee that there are <em>any </em>people that have their birthdays in the same month based on what you're given, so your answer would be 0.
Answer:
$8.50
Step-by-step explanation:
I don't know what Alls are, but if Carlos insists, we can calculate how much he can spend on Alls with the expression:
($31.50) + r
$40
This says the sum of what Carlos has already spent (hot dogs and hamburgers) plus the amount he spends on Alls (rolls?), r, must be equal to or less than the $40 he has allowed himself to spend.
($31.50) + r
$40
r
$40 - $31.50
r
$8.50
Answer:
The careers that use Pythagoras theorem are mentioned below.
Step-by-step explanation:
The Pythagoras theorem states that the sum of squares of the two sides of right angled triangle is equal to the square of the length of the hypotenuse.
Let a, b and c be the sides of a right triangle where c is the length of the hypotenuse.Then

Pythagoras theorem is used in daily life situations.
A surveyor looks through a telescope toward a measuring stick a fixed distance away, so that the telescope's line of sight and the measuring stick form a right angle.
It is also used to calculate the steepness of slopes and mountains.
Answer:
x=-10
Step-by-step explanation:
3x-4(2+3x)=82
3x-(4*2)+(4*3x)=82
3x-8-12x=82
-9x-8=82
-9x-8+8=82+8
-9x=90
-9x/-9=x
90/-9=-10
x=-10
Check the picture below, so the circle looks more or less like that one.
well, the center of it is simply the Midpoint of those two points, and its radius is simply half-the-distance between them.
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-5}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{5}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 3 -5}{2}~~~ ,~~~ \cfrac{ 5 + 9}{2} \right)\implies \left( \cfrac{-2}{2}~~,~~\cfrac{14}{2} \right)\implies \stackrel{center}{(-1~~,~~7)} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-5%7D~%2C~%5Cstackrel%7By_1%7D%7B9%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%203%20-5%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%205%20%2B%209%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cleft%28%20%5Ccfrac%7B-2%7D%7B2%7D~~%2C~~%5Ccfrac%7B14%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cstackrel%7Bcenter%7D%7B%28-1~~%2C~~7%29%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-5}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[3 - (-5)]^2 + [5 - 9]^2}\implies d=\sqrt{(3+5)^2+(-4)^2} \\\\\\ d=\sqrt{8^2+16}\implies d=\sqrt{80}\implies d=4\sqrt{5}~\hfill \stackrel{\textit{half the diameter}}{\cfrac{4\sqrt{5}}{2}\implies \underset{radius}{2\sqrt{5}}}](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-5%7D~%2C~%5Cstackrel%7By_1%7D%7B9%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B3%20-%20%28-5%29%5D%5E2%20%2B%20%5B5%20-%209%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%283%2B5%29%5E2%2B%28-4%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B8%5E2%2B16%7D%5Cimplies%20d%3D%5Csqrt%7B80%7D%5Cimplies%20d%3D4%5Csqrt%7B5%7D~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bhalf%20the%20diameter%7D%7D%7B%5Ccfrac%7B4%5Csqrt%7B5%7D%7D%7B2%7D%5Cimplies%20%5Cunderset%7Bradius%7D%7B2%5Csqrt%7B5%7D%7D%7D)