Answer:
The solution of the system of equations is, (1,-1,2)
Step-by-step explanation:
Given system equation;
x + 5y - 3z = -10
-5x + 6y – 5z = -21
-x + 8y - 8z = -25
Matrix form is written as;
![\left[\begin{array}{ccc}1&5&-3\\-5&6&-5\\-1&8&-8\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}-10\\-21\\-25\end{array}\right] \\\\\\det. = 1\left[\begin{array}{cc}\\6&-5\\8&-8\end{array}\right] -5\left[\begin{array}{cc}\\-5&-5\\-1&-8\end{array}\right] -3\left[\begin{array}{cc}\\-5&6\\-1&8\end{array}\right] \\\\\\det. = 1(-8) -5(35)-3(-34)= -8 - 175+ 102 = -81](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%265%26-3%5C%5C-5%266%26-5%5C%5C-1%268%26-8%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-10%5C%5C-21%5C%5C-25%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cdet.%20%3D%201%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5C%5C6%26-5%5C%5C8%26-8%5Cend%7Barray%7D%5Cright%5D%20-5%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5C%5C-5%26-5%5C%5C-1%26-8%5Cend%7Barray%7D%5Cright%5D%20-3%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5C%5C-5%266%5C%5C-1%268%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cdet.%20%3D%201%28-8%29%20-5%2835%29-3%28-34%29%3D%20-8%20-%20175%2B%20102%20%3D%20-81)
Cofactor;
![First \ row \left[\begin{array}{cc}+\\ 6&-5\\\ 8&-8\end{array}\right \left\begin{array}{cc}-\\ -5&-5\\-1&-8\end{array}\right \left\begin{array}{cc}+\\-5&6\\-1&8\end{array}\right] = [-8 \ \ -35 \ \ -34]\\\\\\\ Second \ row \left[\begin{array}{cc}-\\ 5&-3\\\ 8&-8\end{array}\right \left\begin{array}{cc}+\\ 1&-3\\-1&-8\end{array}\right \left\begin{array}{cc}-\\1&5\\-1&8\end{array}\right] = [16\ \ -11 \ \ -13]\\\\\\](https://tex.z-dn.net/?f=First%20%5C%20row%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C%206%26-5%5C%5C%5C%208%26-8%5Cend%7Barray%7D%5Cright%20%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C%20-5%26-5%5C%5C-1%26-8%5Cend%7Barray%7D%5Cright%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C-5%266%5C%5C-1%268%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5B-8%20%20%5C%20%5C%20-35%20%5C%20%5C%20-34%5D%5C%5C%5C%5C%5C%5C%5C%20Second%20%5C%20row%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C%205%26-3%5C%5C%5C%208%26-8%5Cend%7Barray%7D%5Cright%20%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C%201%26-3%5C%5C-1%26-8%5Cend%7Barray%7D%5Cright%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C1%265%5C%5C-1%268%5Cend%7Barray%7D%5Cright%5D%20%20%3D%20%5B16%5C%20%5C%20-11%20%5C%20%5C%20-13%5D%5C%5C%5C%5C%5C%5C)
![Third \ row \left[\begin{array}{cc}+\\ 5&-3\\\ 6&-5\end{array}\right \left\begin{array}{cc}-\\ 1&-3\\-5&-5\end{array}\right \left\begin{array}{cc}+\\1&5\\-5&6\end{array}\right]= [-7 \ \ 20\ \ 31]](https://tex.z-dn.net/?f=Third%20%5C%20row%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C%205%26-3%5C%5C%5C%206%26-5%5Cend%7Barray%7D%5Cright%20%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C%201%26-3%5C%5C-5%26-5%5Cend%7Barray%7D%5Cright%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C1%265%5C%5C-5%266%5Cend%7Barray%7D%5Cright%5D%3D%20%5B-7%20%5C%20%20%5C%2020%5C%20%5C%2031%5D)
![\left[\begin{array}{ccc}-8&-35&-34\\16&-11&-13\\-7&20&31\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%26-35%26-34%5C%5C16%26-11%26-13%5C%5C-7%2620%2631%5Cend%7Barray%7D%5Cright%5D)
![inverse \ matrix =-\frac{1}{81} \left[\begin{array}{ccc}-8&16&-7\\-35&-11&20\\-34&-13&31\end{array}\right] \\\\\\](https://tex.z-dn.net/?f=inverse%20%5C%20matrix%20%3D-%5Cfrac%7B1%7D%7B81%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%2616%26-7%5C%5C-35%26-11%2620%5C%5C-34%26-13%2631%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C)
Solution of the matrix:
![\left[\begin{array}{c}x\\y\\z\end{array}\right] = -\frac{1}{81} \left[\begin{array}{ccc}-8&16&-7\\-35&-11&20\\-34&-13&31\end{array}\right] X \left[\begin{array}{c}-10\\-21\\-25\end{array}\right] = \left[\begin{array}{c}\frac{-8*-10 }{-81 } +\frac{16*-21 }{-81 } + \frac{-7*-25 }{-81 }\\\\\frac{-35*-10 }{-81 } +\frac{-11*-21 }{-81 }+ \frac{20*-25 }{-81 }\\\\\frac{-34*-10 }{-81 }+ \frac{-13*-21 }{-81 }+ \frac{31*-25 }{-81 }\end{array}\right] \\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20-%5Cfrac%7B1%7D%7B81%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%2616%26-7%5C%5C-35%26-11%2620%5C%5C-34%26-13%2631%5Cend%7Barray%7D%5Cright%5D%20%20X%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-10%5C%5C-21%5C%5C-25%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B-8%2A-10%20%7D%7B-81%20%7D%20%2B%5Cfrac%7B16%2A-21%20%7D%7B-81%20%7D%20%2B%20%5Cfrac%7B-7%2A-25%20%7D%7B-81%20%7D%5C%5C%5C%5C%5Cfrac%7B-35%2A-10%20%7D%7B-81%20%7D%20%2B%5Cfrac%7B-11%2A-21%20%7D%7B-81%20%7D%2B%20%5Cfrac%7B20%2A-25%20%7D%7B-81%20%7D%5C%5C%5C%5C%5Cfrac%7B-34%2A-10%20%7D%7B-81%20%7D%2B%20%5Cfrac%7B-13%2A-21%20%7D%7B-81%20%7D%2B%20%5Cfrac%7B31%2A-25%20%7D%7B-81%20%7D%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C)
![\left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}\frac{-81}{-81} \\\\\frac{81}{-81} \\\\\frac{-162}{-81} \end{array}\right] = \left[\begin{array}{c}1\\-1\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B-81%7D%7B-81%7D%20%5C%5C%5C%5C%5Cfrac%7B81%7D%7B-81%7D%20%5C%5C%5C%5C%5Cfrac%7B-162%7D%7B-81%7D%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C-1%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
Therefore, the correct option is (1,-1,2)
The answer is D.
Since the two triangles are congruent, they would have equal angles.
The reason why the other answer choices are wrong...
A) ∠S is equal to ∠Y, not ∠Z.
The angle that is equal to ∠Z is ∠T.
B) Line ST is equal to Line YZ, not Line XZ.
The Line that is equal to Line XZ is Line RT.
C) Line RS is equal to Line XY, not Line ST.
The Line that is equal to Line ST is Line YZ.
Hope this helped! Brainliest is always welcome :)
Answer:
Sorry about that I didn't read the question correctly but the answer is B.
Step-by-step explanation:
All you are doing is moving the points 4 units to the left and 3 units up. Hope this helped! :)