1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
4 years ago
13

Which equation is not equvilant to A=1/2 bh,

Mathematics
1 answer:
ollegr [7]4 years ago
3 0
Which equation is not equvilant It is c
You might be interested in
Express <br> 8.218.21<br> 8.21<br> 8, point, 21<br> as a mixed number.
djverab [1.8K]
8 21/100 is the answer
3 0
3 years ago
If you have to slow your car when your driving down a hill you should
ludmilkaskok [199]

Answer:

I would say so

Step-by-step explanation:

If you are speeding down a hill that could be dangerous for the car and other people around

5 0
4 years ago
a. If cosθ=−45 where θ is in quadrant 3, find sin2θ. b. If cosθ=2√2 where θ is in quadrant 1, find cos2θ. c. If sinθ=817 where θ
sesenic [268]

Answer:

Part A) sin(2\theta)=\frac{24}{25}

Part B) cos(2\theta)=0

Part C) tan(2\theta)=-\frac{240}{161}

Step-by-step explanation:

Part A) we have cos(\theta)=-\frac{4}{5}

θ is in quadrant 3 ----> the sine is negative

Find sin(2\theta)

we know that

sin(2\theta)=2sin(\theta)cos(\theta)

Remember that

cos^{2} (\theta)+sin^{2} (\theta)=1

substitute

(-\frac{4}{5})^{2}+sin^{2} (\theta)=1

(\frac{16}{25})+sin^{2} (\theta)=1

sin^{2} (\theta)=1-\frac{16}{25}

sin^{2} (\theta)=\frac{9}{25}

sin(\theta)=-\frac{3}{5} ---> remember that the sine is negative (3 quadrant)

Find sin(2\theta)

we have

cos(\theta)=-\frac{4}{5}

sin(\theta)=-\frac{3}{5}

sin(2\theta)=2sin(\theta)cos(\theta)

substitute

sin(2\theta)=2(-\frac{3}{5})(-\frac{4}{5})

sin(2\theta)=\frac{24}{25}

Part B) we have cos(\theta)=\frac{\sqrt{2}}{2}

θ is in quadrant 1

Find cos(2\theta)      

we know that

cos(2\theta)=2cos^{2} (\theta)-1

substitute

cos(2\theta)=2(\frac{\sqrt{2}}{2} )^{2}-1

cos(2\theta)=0

Part C) we have sin(\theta)=\frac{8}{17}

θ is in quadrant 2 ----> the cosine is negative

Find tan(2\theta)  

we know that

tan(2\theta)=\frac{2tan(\theta)}{1-tan^{2} (\theta)}

Remember that

cos^{2} (\theta)+sin^{2} (\theta)=1

substitute

cos^{2} (\theta)+(\frac{8}{17})^{2}=1

cos^{2} (\theta)=1-\frac{64}{289}

cos^{2} (\theta)=\frac{225}{289}

cos(\theta)=-\frac{15}{17}

Find tan(\theta)  

tan(\theta)=\frac{sin(\theta)}{cos(\theta)}

substitute

tan(\theta)=\frac{(8/17)}{(-15/17)}

tan(\theta)=-\frac{8}{15}

Find tan(2\theta)  

tan(2\theta)=\frac{2tan(\theta)}{1-tan^{2} (\theta)}

substitute

tan(2\theta)=\frac{2(-\frac{8}{15})}{1-(-\frac{8}{15})^{2}}

tan(2\theta)=\frac{(-\frac{16}{15})}{1-(\frac{64}{225})}

tan(2\theta)=\frac{(-\frac{16}{15})}{1-\frac{64}{225}}

tan(2\theta)=\frac{(-\frac{16}{15})}{\frac{161}{225}}

tan(2\theta)=-\frac{240}{161}

3 0
3 years ago
Find the term independent of x in the expansion of
laiz [17]

Step-by-step explanation:

\frac{19683x {}^{18} }{512}  -  \frac{59049x {}^{15} }{512}  +  \frac{19683x {}^{12} }{128 }  -  \frac{15309x {}^{9} }{?128}  +  \frac{15309x {}^{6} }{256}  -  \frac{15309x {}^{9} }{128}  +  \frac{15309x {}^{6} }{?256}  -  \frac{5103x {}^{3} }{256}  +  \frac{567}{128}  -   \frac{81}{128x {}^{3} }  +  \frac{27}{512x {}^{6} }  -  \frac{1}{512x {}^{9} } it's long there's some calculations in de side hope its helpful

8 0
3 years ago
16.15 – 13<br> A. (413 – 32)2<br> B. 33(4.1 – 1)(45 + 1)<br> c. 3(45 – 1)2<br> d. 33(1682 – x)
sergiy2304 [10]

Answer:

neither its 3.15

Step-by-step explanation:

all you have to do is subtract the first number from the secondes

4 0
4 years ago
Other questions:
  • What is the solution of (4x+3)^2=18
    9·1 answer
  • Find the perimeter ​
    6·2 answers
  • Help if you understand circles. Thanks
    11·1 answer
  • 2x^2-28=10x<br> Factor then solve?
    15·2 answers
  • -(2x+12) (9x^2+4x-9) <br><br><br>please show all work!
    5·1 answer
  • Don't mind the purple dot ​
    9·1 answer
  • Equations &amp; Graphs
    10·2 answers
  • WILL MARK AS BRAINLIEST
    14·1 answer
  • To solve the system of equations below, Grace isolated the variable y in the
    12·2 answers
  • Investments increase exponentially by
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!