Answer:
The correct answer is "Secondary active transport".
Explanation:
Secondary active transport is a form of across the membrane transport that involves a transporter protein catalyzing the movement of an ion down its electrochemical gradient to allow the movement of another molecule or ion uphill to its concentration/electrochemical gradient. In this example, the transporter protein (antiporter), move 3 Na⁺ into the cell in exchange for one Ca⁺⁺ leaving the cell. The 3 Na⁺ are the ions moved down its electrochemical gradient and the one Ca⁺⁺ is the ion moved uphill its electrochemical gradient, because Na+ and Ca⁺⁺are more concentrated in the solution than inside the cell. Therefore, this scenario is an example of secondary active transport.
Answer:
Kp = (Partial pressure H₂O) . (Partial Pressure Cl₂)² / Partial pressure O₂ . (Partial Pressure HCl)⁴
Explanation:
This is the reaction:
4 HCl (g) + O₂ (g) ⇒ 2 Cl₂ (g) + 2 H₂O(g)
Kp = (Partial pressure H₂O) . (Partial Pressure Cl₂)² / Partial pressure O₂ . (Partial Pressure HCl)⁴
I think it’s to long to fit in a period??
Explanation:
A chemical bond which is formed in between positively charged atoms when there is sharing of free electrons in a lattice of cations is known as a metallic bond.
In a pure metal, atoms are surrounded by free moving valence electrons which move from one part of metal to another.
Thus, we can conclude that pure metals are held together by metallic bonds due to attraction between mobile valence electrons and positively charged metal ions.