Answer:
0.04 M
Explanation:
Given data:
Mass of Na₂SO₄= 14.2 g
Volume of solution = 2.50 L
Molarity of solution = ?
Solution:
Number of moles of Na₂SO₄:
Number of moles = mass/ molar mass
Number of moles = 14.2 g/ 142.04 g/mol
Number of moles = 0.1 mol
Molarity :
Molarity = number of moles of solute / volume of solution in L
Molarity = 0.1 mol / 2.50 L
Molarity = 0.04 M
Elements are represented by their symbols with the first letter capitalized and the rest in lowercase. Copper is represented by Cu and Bromine is represented by Br. When combined to for a compound, the format of the symbols remain. Hence, the correct format would be CuBr.
Thus, the answer is C: CuBr<span>.</span><span />
Answer:
<h2>0.15 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities.
From the question we have

We have the final answer as
<h3>0.15 moles</h3>
Hope this helps you
Since glycolysis of one glucose molecule generates two acetyl CoA molecules, the reactions in the glycolytic pathway and citric acid cycle produce six CO2 molecules, 10 NADH molecules, and two FADH2 molecules per glucose molecule