We can either convert them to decimals or to fractions
if decimals
2/3=0.66666666
4/5=8/10=0.8
so the order is
-0.6, 0.65, 0.66, 0.8 or
-0.6, 0.65, 2/3, 4/5
if conver to fractions then
since -0.6 is negative, it is smallest, no need to convert
0.65=65 hundreths=65/100
2/3=66/99=prety close
4/5=8/10=80/100
order is
-0.6, 65/100, 66/99, 80/100 or
-0.6, 0.65, 2/3, 0.8
Step-by-step explanation:
Given:
x = 26214.47
s = 5969.25
n = 15
t = 2.046
The confidence interval is:
CI = x ± t (s / √n)
CI = 26214.47 ± 2.046 (5969.25 / √15)
CI = (23061.06, 29367.88)
Answer:15
Step-by-step explanation:trust me
Answer:


![Interval = [666.78, 781.62]](https://tex.z-dn.net/?f=Interval%20%3D%20%5B666.78%2C%20781.62%5D)
Step-by-step explanation:
Given
The data for 25 undergraduates
Solving (a): Range and Standard deviation
The range is:

From the dataset:


So:



The standard deviation is:

First, calculate the mean



So, the standard deviation is:




Solving (b): The interval of the 95% of the observation.
Using the emperical rule, we have:
![Interval = [\bar x - 2*\sigma, \bar x+ 2*\sigma]](https://tex.z-dn.net/?f=Interval%20%3D%20%5B%5Cbar%20x%20-%202%2A%5Csigma%2C%20%5Cbar%20x%2B%202%2A%5Csigma%5D)
![Interval = [724.2 - 2*28.71, 724.2 + 2*28.71]](https://tex.z-dn.net/?f=Interval%20%3D%20%5B724.2%20-%202%2A28.71%2C%20724.2%20%2B%202%2A28.71%5D)
![Interval = [666.78, 781.62]](https://tex.z-dn.net/?f=Interval%20%3D%20%5B666.78%2C%20781.62%5D)
The LCM of 20 and 52 is 260
hope this helps:)