Answer:
false
Step-by-step explanation:
2.30+30= 32.30
Let's solve this problem step-by-step.
−3(1−2x)=3x+3(x−3)+6
Step 1: Simplify both sides of the equation.
−3(1−2x)=3x+3(x−3)+6
(−3)(1)+(−3)(−2x)=3x+(3)(x)+(3)(−3)+6(Distribute)
−3+6x=3x+3x+−9+6
6x−3=(3x+3x)+(−9+6)(Combine Like Terms)
6x−3=6x+−3
6x−3=6x−3
Step 2: Subtract 6x from both sides.
6x−3−6x=6x−3−6x
−3=−3
Step 3: Add 3 to both sides.
−3+3=−3+3
0=0
So, 0=0 or all real numbers.
Answer: true
Step-by-step explanation:
Answer:
Tn = 2Tn-1 - Tn-2
Step-by-step explanation:
Before we can generate the recursive sequence, we need to find the nth term of the given sequence.
nth term of an AP is given as:
Tn = a+(n-1)d
If a17 = -40
T17 = a+(17-1)d = -40
a+16d = -40 ...(1)
If a28 = -73
T28 = a+(28-1)d = -73
a+27d = -73 ...(2)
Solving both equations simultaneously using elimination method.
Subtracting 1 from 2 we have:
27d - 16d = -73-(-40)
11d = -73+40
11d = -33
d = -3
Substituting d = -3 into 1
a+16(-3) = -40
a - 48 = -40
a = -40+48
a = 8
Given a = 8, d = -3, the nth term of the sequence will be
Tn = 8+(n-1) (-3)
Tn = 8+(-3n+3)
Tn = 8-3n+3
Tn = 11-3n
Given Tn = 11-3n and d = -3
Tn-1 = Tn - d... (3)
Tn-1 = 11-3n +3
Tn-1 = 14-3n
Tn-2 = Tn-2d...(4)
Tn-2 = 11-3n-2(-3)
Tn-2 = 11-3n+6
Tn-2 = 17-3n
From 3, d = Tn - Tn-1
From 4, d = (Tn - Tn-2)/2
Equating both common difference
(Tn - Tn-2)/2 = Tn - Tn-1
Tn - Tn-2 = 2(Tn - Tn-1)
Tn - Tn-2 = 2Tn-2Tn-1
2Tn-Tn = 2Tn-1 - Tn-2
Tn = 2Tn-1 - Tn-2
The recursive formula will be
Tn = 2Tn-1 - Tn-2