The resulting composite function (f∘f)(x) is x⁴+2x²+2
When a function is written inside another function, it is known as a composite function
Given the function f(x)=x²+1,
(f∘f)(x) = f(f(x))
f(f(x)) = f(x²+1)
This means we will need to replace x with x²+1 in f(x) as shown:
f(x²+1) = (x²+1)²+1
Expand
f(x²+1) = x⁴+2x²+1+1
f(x²+1) = x⁴+2x²+2
Hence the resulting composite function (f∘f)(x) is x⁴+2x²+2
Learn more here: brainly.com/question/3256461
Answer:
In(8x)=[In]8 + [In]x
Step-by-step explanation:
By product rule:
![In(8x)=[In]8 + [In]x](https://tex.z-dn.net/?f=In%288x%29%3D%5BIn%5D8%20%2B%20%5BIn%5Dx)
25.5
102/4=25.5
Not really sure though
Answer:
<h3>$ 20 </h3>
Step-by-step explanation:

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
<em>Can</em><em> </em><em>I</em><em> </em><em>have</em><em> </em><em>the</em><em> </em><em>brainliest</em><em> </em><em>please</em><em>?</em>
<em>Have</em><em> </em><em>a</em><em> </em><em>nice</em><em> </em><em>day</em><em>!</em>