The perimeter of a triangle is given by:
Perimeter = sum of three sides
We are given perimeter = 112 in.
Hypotenuse = 50 in.
Let us say the other two sides are a and b.
So , we have
![a+b+50 =112](https://tex.z-dn.net/?f=%20a%2Bb%2B50%20%3D112%20)
![a+b =62](https://tex.z-dn.net/?f=%20a%2Bb%20%3D62%20)
...............(2)
In a right angle triangle we can apply pythagorean theorem,
a² + b² = c²
here c is hypotenuse which is 50 in.
a²+b² = 50²
a²+b² = 2500............(2)
Plugging the value of a from equation (1) in (2)
![(62-b)^{2}+b^{2}=2500](https://tex.z-dn.net/?f=%20%2862-b%29%5E%7B2%7D%2Bb%5E%7B2%7D%3D2500)
![3844-124b+(b)^{2}+b^{2}=2500](https://tex.z-dn.net/?f=%203844-124b%2B%28b%29%5E%7B2%7D%2Bb%5E%7B2%7D%3D2500)
![2(b)^{2}-124b+1344=0](https://tex.z-dn.net/?f=2%28b%29%5E%7B2%7D-124b%2B1344%3D0)
Factorising ,
![(b-14)(b-48)=0](https://tex.z-dn.net/?f=%20%28b-14%29%28b-48%29%3D0%20)
So we have two values of b
b=14 and b=48
If b=14, a=48
If b=48, a=14
Answer: The shorter leg will be 14 inches.