One mole methane combusts to form one mole CO2 and 2 moles H2O
In gases the only thing that isn't related is acidity.
Rutherford's gold foil experiment proved that there was a small, dense, positively charged nucleus at the center, which contained most of the mass of the atom. Which contained electrons orbiting the nucleus.
This is an ideal gas problem. The gas inside the balloon is considered ideal. Ideal gas equation is a function pressure, temperature, amount and volume. Note: amount is constant since the balloon ins closed. Pressure is maintained constant since the walls are flexible. Ideal gas equation is: PV=nRT. Put all constant in one side and variables in one.
P/nR=T/V. To find the answer to the question equate the constants of both situation
T1/V1=T2/V2
(25+273.15)/3=(x+273.15)/2
x=-74.38 degC
Answer:
Option D
Explanation:
Rutherford deduced that the atomic nucleus was positively charged because the alpha particles that he fired at the metal foils were positively charged, and like charges repel. Alpha particles consist of two protons and two neutrons, so they are positively charged. In Rutherford's experiments most of the alpha particles passed straight through the foil without being deflected. However, occasionally the alpha particles were deflected in their paths, and rarely the alpha particles were deflected backward at a 180 degree angle.
Since like charges repel, Rutherford concluded that the cause of the deflections of the positively charged alpha particles had to be something within the atom that was also positively charged. Rutherford concluded from his metal foil experiments that most of an atom is empty space with a tiny, dense, positively charged nucleus at the center that contains most of the mass of the atom.